First preliminary tests of the general relativistic gravitomagnetic
field of the Sun and new constraints on a Yukawa-like fifth force from
planetary data
The general relativistic Lense-Thirring precessions of the perihelia of the
inner planets of the Solar System are about 10^-3 arcseconds per century.
Recent improvements in planetary orbit determination may yield the first
observational evidence of such a tiny effect. Indeed, corrections to the known
perihelion rates of -0.0036 +/- 0.0050, -0.0002 +/- 0.0004 and 0.0001 +/-
0.0005 arcseconds per century were recently estimated by E.V. Pitjeva for
Mercury, the Earth and Mars, respectively, on the basis of the EPM2004
ephemerides and a set of more than 317,000 observations of various kinds. The
predicted relativistic Lense-Thirring precessions for these planets are
-0.0020, -0.0001 and -3 10^-5 arcseconds per century, respectively and are
compatible with the determined perihelia corrections. The relativistic
predictions fit better than the zero-effect hypothesis, especially if a
suitable linear combination of the perihelia of Mercury and the Earth, which a
priori cancels out any possible bias due to the solar quadrupole mass moment,
is considered. However, the experimental errors are still large. Also the
latest data for Mercury processed independently by Fienga et al. with the INPOP
ephemerides yield preliminary insights about the existence of the solar
Lense-Thirring effect. The data from the forthcoming planetary mission
BepiColombo will improve our knowledge of the orbital motion of this planet
and, consequently, the precision of the measurement of the Lense-Thirring
effect. As a by-product of the present analysis, it is also possible to
constrain the strength of a Yukawa-like fifth force to a 10^-12-10^-13 level at
scales of about one Astronomical Unit (10^11 m).Comment: LaTex, 22 pages, 1 figure, 5 tables, 62 references. To appear in
Planetary and Space Scienc