306 research outputs found
Test of constancy of speed of light with rotating cryogenic optical resonators
A test of Lorentz invariance for electromagnetic waves was performed by
comparing the resonance frequencies of two optical resonators as a function of
orientation in space. In terms of the Robertson-Mansouri-Sexl theory, we obtain
, a ten-fold improvement compared to
the previous best results. We also set a first upper limit for a so far unknown
parameter of the Standard Model Extension test theory,
.Comment: 4 pages, 2 figures, accepted for publication Phys. Rev. A (2005
Atom gravimeters and gravitational redshift
In a recent paper, H. Mueller, A. Peters and S. Chu [A precision measurement
of the gravitational redshift by the interference of matter waves, Nature 463,
926-929 (2010)] argued that atom interferometry experiments published a decade
ago did in fact measure the gravitational redshift on the quantum clock
operating at the very high Compton frequency associated with the rest mass of
the Caesium atom. In the present Communication we show that this interpretation
is incorrect.Comment: 2 pages, Brief Communication appeared in Nature (2 September 2010
Tests of relativity using a microwave resonator
The frequencies of a cryogenic sapphire oscillator and a hydrogen maser are
compared to set new constraints on a possible violation of Lorentz invariance.
We determine the variation of the oscillator frequency as a function of its
orientation (Michelson-Morley test) and of its velocity (Kennedy-Thorndike
test) with respect to a preferred frame candidate. We constrain the
corresponding parameters of the Mansouri and Sexl test theory to and which is equivalent to the best previous result for the
former and represents a 30 fold improvement for the latter.Comment: 8 pages, 2 figures, submitted to Physical Review Letters (October 3,
2002
A note on light velocity anisotropy
It is proved that in experiments on or near the Earth, no anisotropy in the
one-way velocity of light may be detected. The very accurate experiments which
have been performed to detect such an effect are to be considered significant
tests of both special relativity and the equivalence principleComment: 8 pages, LaTex, Gen. Relat. Grav. accepte
Joint Elastic Side-Scattering Lidar and Raman Lidar Measurements of Aerosol Optical Properties in South East Colorado
We describe an experiment, located in south-east Colorado, USA, that measured
aerosol optical depth profiles using two Lidar techniques. Two independent
detectors measured scattered light from a vertical UV laser beam. One detector,
located at the laser site, measured light via the inelastic Raman
backscattering process. This is a common method used in atmospheric science for
measuring aerosol optical depth profiles. The other detector, located
approximately 40km distant, viewed the laser beam from the side. This detector
featured a 3.5m2 mirror and measured elastically scattered light in a bistatic
Lidar configuration following the method used at the Pierre Auger cosmic ray
observatory. The goal of this experiment was to assess and improve methods to
measure atmospheric clarity, specifically aerosol optical depth profiles, for
cosmic ray UV fluorescence detectors that use the atmosphere as a giant
calorimeter. The experiment collected data from September 2010 to July 2011
under varying conditions of aerosol loading. We describe the instruments and
techniques and compare the aerosol optical depth profiles measured by the Raman
and bistatic Lidar detectors.Comment: 34 pages, 16 figure
Electromagnetic Polarization Effects due to Axion Photon Mixing
We investigate the effect of axions on the polarization of electromagnetic
waves as they propagate through astronomical distances. We analyze the change
in the dispersion of the electromagnetic wave due to its mixing with axions. We
find that this leads to a shift in polarization and turns out to be the
dominant effect for a wide range of frequencies. We analyze whether this effect
or the decay of photons into axions can explain the large scale anisotropies
which have been observed in the polarizations of quasars and radio galaxies. We
also comment on the possibility that the axion-photon mixing can explain the
dimming of distant supernovae.Comment: 18 pages, 1 figur
Drivers of lichen species richness at multiple spatial scales in temperate forests
Only few studies analysing lichen diversity have simultaneously considered
interactions among drivers that operate at different spatial and temporal scales.
Aims: The aims of this study were to evaluate the relative importance of host tree, and local,
landscape and historical factors in explaining lichen diversity in managed temperate forests, and
to test the potential interactions among factors acting at different spatial scales.
Methods: Thirty-five stands were selected in the ĆrsĂ©g region, western Hungary. Linear models
and multi-model inference within an information-theory framework were used to evaluate the
role of different variables on lichen species richness.
Results: Drivers at multiple spatial scales contributed to shaping lichen species richness both at
the tree and plot levels. Tree level species richness was related to both tree and plot level
factors. With increasing relative diffuse light lichen species richness increased; this effect was
stronger on higher than on lower part of the trunks. At the plot-scale, species richness was
affected by local drivers. Landscape and historical factors had no or only marginal effect.
Conclusions: Lichen conservation in temperate managed forests could be improved if the
complex interactions among host tree quality and availability, micro-climatic conditions, and
management were taken into consideration
Radioscience simulations in General Relativity and in alternative theories of gravity
In this communication, we focus on the possibility to test GR with
radioscience experiments. We present a new software that in a first step
simulates the Range/Doppler signals directly from the space time metric (thus
in GR and in alternative theories of gravity). In a second step, a
least-squares fit of the involved parameters is performed in GR. This software
allows one to get the order of magnitude and the signature of the modifications
induced by an alternative theory of gravity on radioscience signals. As
examples, we present some simulations for the Cassini mission in
Post-Einsteinian gravity and with the MOND External Field Effect.Comment: 4 pages; Proceedings of "Les Rencontres de Moriond 2011 - Gravitation
session
Cold atom Clocks and Applications
This paper describes advances in microwave frequency standards using
laser-cooled atoms at BNM-SYRTE. First, recent improvements of the Cs
and Rb atomic fountains are described. Thanks to the routine use of a
cryogenic sapphire oscillator as an ultra-stable local frequency reference, a
fountain frequency instability of where
is the measurement time in seconds is measured. The second advance is a
powerful method to control the frequency shift due to cold collisions. These
two advances lead to a frequency stability of at 7\times 10^{-16}^{87}^{133}$Cs fountains.
Finally we give an update on the cold atom space clock PHARAO developed in
collaboration with CNES. This clock is one of the main instruments of the
ACES/ESA mission which is scheduled to fly on board the International Space
Station in 2008, enabling a new generation of relativity tests.Comment: 30 pages, 11 figure
All clinically-relevant blood components transmit prion disease following a single blood transfusion: a sheep model of vCJD
Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion
- âŠ