53 research outputs found

    Advancing coastal ocean modelling, analysis, and prediction for the US Integrated Ocean Observing System

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here by permission of Taylor & Francis for personal use, not for redistribution. The definitive version was published in Journal of Operational Oceanography 10 (2017): 115-126, doi:10.1080/1755876X.2017.1322026.This paper outlines strategies that would advance coastal ocean modeling, analysis and prediction as a complement to the observing and data management activities of the coastal components of the U.S. Integrated Ocean Observing System (IOOS®) and the Global Ocean Observing System (GOOS). The views presented are the consensus of a group of U.S. based researchers with a cross-section of coastal oceanography and ocean modeling expertise and community representation drawn from Regional and U.S. Federal partners in IOOS. Priorities for research and development are suggested that would enhance the value of IOOS observations through model-based synthesis, deliver better model-based information products, and assist the design, evaluation and operation of the observing system itself. The proposed priorities are: model coupling, data assimilation, nearshore processes, cyberinfrastructure and model skill assessment, modeling for observing system design, evaluation and operation, ensemble prediction, and fast predictors. Approaches are suggested to accomplish substantial progress in a 3-8 year timeframe. In addition, the group proposes steps to promote collaboration between research and operations groups in Regional Associations, U.S. Federal Agencies, and the international ocean research community in general that would foster coordination on scientific and technical issues, and strengthen federal-academic partnerships benefiting IOOS stakeholders and end users.2018-05-2

    What we have learned from the framework for ocean observing: evolution of the global ocean observing system

    Get PDF
    The Global Ocean Observing System (GOOS) and its partners have worked together over the past decade to break down barriers between open-ocean and coastal observing, between scientific disciplines, and between operational and research institutions. Here we discuss some GOOS successes and challenges from the past decade, and present ideas for moving forward, including highlights of the GOOS 2030 Strategy, published in 2019. The OceanObs’09 meeting in Venice in 2009 resulted in a remarkable consensus on the need for a common set of guidelines for the global ocean observing community. Work following the meeting led to development of the Framework for Ocean Observing (FOO) published in 2012 and adopted by GOOS as a foundational document that same year. The FOO provides guidelines for the setting of requirements, assessing technology readiness, and assessing the usefulness of data and products for users. Here we evaluate successes and challenges in FOO implementation and consider ways to ensure broader use of the FOO principles. The proliferation of ocean observing activities around the world is extremely diverse and not managed, or even overseen by, any one entity. The lack of coherent governance has resulted in duplication and varying degrees of clarity, responsibility, coordination and data sharing. GOOS has had considerable success over the past decade in encouraging voluntary collaboration across much of this broad community, including increased use of the FOO guidelines and partly effective governance, but much remains to be done. Here we outline and discuss several approaches for GOOS to deliver more effective governance to achieve our collective vision of fully meeting society’s needs. What would a more effective and well-structured governance arrangement look like? Can the existing system be modified? Do we need to rebuild it from scratch? We consider the case for evolution versus revolution. Community-wide consideration of these governance issues will be timely and important before, during and following the OceanObs’19 meeting in September 2019

    Formation and preservation of greigite (Fe<sub>3</sub>S<sub>4</sub>) in sediments from the Santa Barbara Basin: implications for paleoenvironmental changes during the past 35 ka

    Get PDF
    Diagenetic processes are known to modify sedimentary records, but they can also reveal important paleoenvironmental changes. Here we investigate variations in sedimentary iron diagenesis and depositional environments for the last 35 ka by analyzing the rock magnetic and geochemical properties of two sediment cores collected in the Santa Barbara Basin (California). In organic-rich sediments, early diagenesis often leads to partial dissolution of detrital iron oxides and stepwise formation of authigenic pyrite (FeS2). The pyritization process takes place following several geochemical pathways, sometimes involving intermediate iron sulfide species such as greigite (Fe3S4). Sedimentary conditions in the basin appear to have recurrently favored preservation of greigite (identified by its magnetic properties) and inhibited its complete transformation into pyrite. The Holocene interval contains a series of centimeter-thick greigite-bearing layers that are associated with large flood deposits, which are known in the basin as ‘‘gray layers.’’ We propose that greigite preservation was enabled in these sediments by their relative enrichment in reactive iron over organic matter and/or hydrogen sulfide (because of their high ratio of terrigenous over organic material), which limited pyritization reactions. Within the glacial deposits, formation and preservation of meter-thick greigite layers occurred in terrigenous-rich and organic-poor sedimentary layers and is proposed to result from a similar diagenetic process to that in the Holocene greigite-bearing layers (dominance of reactive iron over organic matter and/or HS�). The terrigenous enrichments in the glacial greigite-bearing layers are probably related to climatic or sea level changes because they occur at times of massive iceberg releases in the North Atlantic, the so-called Heinrich events
    • …
    corecore