1,021 research outputs found

    Low-lying excitations of a trapped rotating Bose-Einstein condensate

    Full text link
    We investigate the low-lying excitations of a weakly-interacting, harmonically-trapped Bose-Einstein condensed gas under rotation, in the limit where the angular mometum LL of the system is much less than the number of the atoms NN in the trap. We show that in the asymptotic limit NN \to \infty the excitation energy, measured from the energy of the lowest state, is given by 27N3(N31)v0/6827 N_{3}(N_{3}-1) v_0 /68, where N3N_{3} is the number of octupole excitations and v0v_{0} is the unit of the interaction energy.Comment: 3 pages, RevTex, 2 ps figures, submitted to PR

    Discovery of an optical bow-shock around pulsar B0740-28

    Get PDF
    We report the discovery of a faint H-alpha pulsar wind nebula (PWN) powered by the radio pulsar B0740-28. The characteristic bow-shock morphology of the PWN implies a direction of motion consistent with the previously measured velocity vector for the pulsar. The PWN has a flux density more than an order of magnitude lower than for the PWNe seen around other pulsars, but, for a distance 2 kpc, it is consistent with propagation through a medium of atomic density n_H ~ 0.25 cm^{-3}, and neutral fraction of 1%. The morphology of the PWN in the area close to the pulsar is distinct from that in downstream regions, as is also seen for the PWN powered by PSR B2224+65. In particular, the PWN associated with PSR B0740-28 appears to close at its rear, suggesting that the pulsar has recently passed through a transition from low density to high density ambient gas. The faintness of this source underscores that deep searches are needed to find further examples of optical pulsar nebulae.Comment: 5 pages, 1 figure, to appear in Astronomy & Astrophysics Letter

    Scattering Wave Functions at Bound State Poles

    Get PDF
    The normalisation relation between the bound and scattering S-state wave functions, extrapolated to the bound state pole, is derived from the Schroedinger equation. It is shown that, unlike previous work, the result does not depend on the details of the potential through the corresponding Jost function but is given uniquely in terms of the binding energy. The generalisations to higher partial waves and one-dimensional scattering are given.Comment: 15 pages Latex. No graph

    Condensation of `composite bosons' in a rotating BEC

    Full text link
    We provide evidence for several novel phases in the dilute limit of rotating BECs. By exact calculation of wavefunctions and energies for small numbers of particles, we show that the states near integer angular momentum per particle are best considered condensates of composite entities, involving vortices and atoms. We are led to this result by explicit comparison with a description purely in terms of vortices. Several parallels with the fractional quantum Hall effect emerge, including the presence of the Pfaffian state.Comment: 4 pages, Latex, 3 figure

    Weakly Interacting Bose-Einstein Condensates Under Rotation: Mean-field versus Exact Solutions

    Full text link
    We consider a weakly-interacting, harmonically-trapped Bose-Einstein condensed gas under rotation and investigate the connection between the energies obtained from mean-field calculations and from exact diagonalizations in a subspace of degenerate states. From the latter we derive an approximation scheme valid in the thermodynamic limit of many particles. Mean-field results are shown to emerge as the correct leading-order approximation to exact calculations in the same subspace.Comment: 4 pages, RevTex, submitted to PR

    The Yrast Spectra of Weakly Interacting Bose-Einstein Condensates

    Full text link
    The low energy quantal spectrum is considered as a function of the total angular momentum for a system of weakly interacting bosonic atoms held together by an external isotropic harmonic potential. It is found that besides the usual condensation into the lowest state of the oscillator, the system exhibits two additional kinds of condensate and associated thermodynamic phase transitions. These new phenomena are derived from the degrees of freedom of "partition space" which describes the multitude of different ways in which the angular momentum can be distributed among the atoms while remaining all the time in the lowest state of the oscillator

    Eta-Helium Quasi-Bound States

    Full text link
    The cross section and tensor analysing power t_20 of the d\vec{d}->eta 4He reaction have been measured at six c.m. momenta, 10 < p(eta) < 90 MeV/c. The threshold value of t_20 is consistent with 1/\sqrt{2}, which follows from parity conservation and Bose symmetry. The much slower momentum variation observed for the reaction amplitude, as compared to that for the analogous pd->eta 3He case, suggests strongly the existence of a quasi-bound state in the eta-4He system and optical model fits indicate that this probably also the case for eta-3He.Comment: LaTeX, uses elsart.sty, 10 pages, 3 Postscript figures, Submitted to Physics Letters

    Exact Eignstates for Trapped Weakly Interacting Bosons in Two Dimensions

    Full text link
    A system of N two-dimensional weakly interacting bosons in a harmonic trap is considered. When the two-particle potential is a delta function Smith and Wilkin have analytically proved that the elementary symmetric polynomials of particle coordinates measured from the center of mass are exact eigenstates. In this study, we point out that their proof works equally well for an arbitrary two-particle potential which possesses the translational and rotational symmetries. We find that the interaction energy associated with the eigenstate with angular momentum L is equal to aN(N-1)/2+(b-a)NL/2, where a and b are the interaction energies of two bosons in the lowest-energy one-particle state with zero and one unit of angular momentum, respectively. Additionally, we study briefly the case of attractive quartic interactions. We prove rigorously that the lowest-energy state is the one in which all angular momentum is carried by the center of mass motion.Comment: 4 pages, minor changes made, to appear in PRA Brie

    Satellite-Derived Distributions, Inventories and Fluxes of Dissolved and Particulate Organic Matter Along the Northeastern U.S. Continental Margin

    Get PDF
    Estuaries and the coastal ocean experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine and estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements, optical properties and remote sensing to examine the distributions and inventories of organic carbon in the U.S. Middle Atlantic Bight and Gulf of Maine. Algorithms developed to retrieve colored DOM (CDOM), Dissolved (DOC) and Particulate Organic Carbon (POC) from NASA's MODIS-Aqua and SeaWiFS satellite sensors are applied to quantify the distributions and inventories of DOC and POC. Horizontal fluxes of DOC and POC from the continental margin to the open ocean are estimated from SeaWiFS and MODIS-Aqua distributions of DOC and POC and horizontal divergence fluxes obtained from the Northeastern North Atlantic ROMS model. SeaWiFS and MODIS imagery reveal the importance of estuarine outflow to the export of CDOM and DOC to the coastal ocean and a net community production of DOC on the shelf

    Yrast line for weakly interacting trapped bosons

    Full text link
    We compute numerically the yrast line for harmonically trapped boson systems with a weak repulsive contact interaction, studying the transition to a vortex state as the angular momentum L increases and approaches N, the number of bosons. The L=N eigenstate is indeed dominated by particles with unit angular momentum, but the state has other significant components beyond the pure vortex configuration. There is a smooth crossover between low and high L with no indication of a quantum phase transition. Most strikingly, the energy and wave function appear to be analytical functions of L over the entire range 2 < L < N. We confirm the structure of low-L states proposed by Mottelson, as mainly single-particle excitations with two or three units of angular momentum.Comment: 9 pages, 3 EPS-figures, uses psfig.st
    corecore