1,225 research outputs found

    Multiaxial analyzer detects low-energy electrons

    Get PDF
    Three curved plate energy analyzers coupled with three electron multiplier tubes detect and measure low energy electron flux in several directions simultaneously

    On the Measurement of Atmospheric Density Using Dial in the O2 A-Band (770 Nm)

    Get PDF
    Differential Absorption Lidar (DIAL) measurements in the A-band of molecular oxygen were suggested as a means of profiling atmospheric density. Progress towards this capability is reported

    C2 and CN Emission in the Shock Tube

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70038/2/JCPSA6-27-6-1415-1.pd

    Search for a T-odd, P-even Triple Correlation in Neutron Decay

    Get PDF
    Background: Time-reversal-invariance violation, or equivalently CP violation, may explain the observed cosmological baryon asymmetry as well as signal physics beyond the Standard Model. In the decay of polarized neutrons, the triple correlation D\cdot(p_{e}\timesp_{\nu}) is a parity-even, time-reversal- odd observable that is uniquely sensitive to the relative phase of the axial-vector amplitude with respect to the vector amplitude. The triple correlation is also sensitive to possible contributions from scalar and tensor amplitudes. Final-state effects also contribute to D at the level of 1e-5 and can be calculated with a precision of 1% or better. Purpose: We have improved the sensitivity to T-odd, P-even interactions in nuclear beta decay. Methods: We measured proton-electron coincidences from decays of longitudinally polarized neutrons with a highly symmetric detector array designed to cancel the time-reversal-even, parity-odd Standard-Model contributions to polarized neutron decay. Over 300 million proton-electron coincidence events were used to extract D and study systematic effects in a blind analysis. Results: We find D = [-0.94\pm1.89(stat)\pm0.97(sys)]e-4. Conclusions: This is the most sensitive measurement of D in nuclear beta decay. Our result can be interpreted as a measurement of the phase of the ratio of the axial-vector and vector coupling constants (CA/CV= |{\lambda}|exp(i{\phi}_AV)) with {\phi}_AV = 180.012{\deg} \pm0.028{\deg} (68% confidence level) or to constrain time-reversal violating scalar and tensor interactions that arise in certain extensions to the Standard Model such as leptoquarks. This paper presents details of the experiment, analysis, and systematic- error corrections.Comment: 21 pages, 22 figure

    emiT: an apparatus to test time reversal invariance in polarized neutron decay

    Get PDF
    We describe an apparatus used to measure the triple-correlation term (\D \hat{\sigma}_n\cdot p_e\times p_\nu) in the beta-decay of polarized neutrons. The \D-coefficient is sensitive to possible violations of time reversal invariance. The detector has an octagonal symmetry that optimizes electron-proton coincidence rates and reduces systematic effects. A beam of longitudinally polarized cold neutrons passes through the detector chamber, where a small fraction beta-decay. The final-state protons are accelerated and focused onto arrays of cooled semiconductor diodes, while the coincident electrons are detected using panels of plastic scintillator. Details regarding the design and performance of the proton detectors, beta detectors and the electronics used in the data collection system are presented. The neutron beam characteristics, the spin-transport magnetic fields, and polarization measurements are also described.Comment: 15 pages, 13 figure

    The BNO-LNGS joint measurement of the solar neutrino capture rate in 71Ga

    Full text link
    We describe a cooperative measurement of the capture rate of solar neutrinos by the reaction 71Ga(\nu_e,e^-)71Ge. Extractions were made from a portion of the gallium target in the Russian-American Gallium Experiment SAGE and the extraction samples were transported to the Gran Sasso laboratory for synthesis and counting at the Gallium Neutrino Observatory GNO. Six extractions of this type were made and the resultant solar neutrino capture rate was 64 ^{+24}_{-22} SNU, which agrees well with the overall result of the gallium experiments. The major purpose of this experiment was to make it possible for SAGE to continue their regular schedule of monthly solar neutrino extractions without interruption while a separate experiment was underway to measure the response of 71Ga to neutrinos from an 37Ar source. As side benefits, this experiment proved the feasibility of long-distance sample transport in ultralow background radiochemical experiments and familiarized each group with the methods and techniques of the other.Comment: 7 pages, no figures; minor additions in version

    Effects of Test-Driven Development : A Comparative Analysis of Empirical Studies

    Get PDF
    Test-driven development is a software development practice where small sections of test code are used to direct the development of program units. Writing test code prior to the production code promises several positive effects on the development process itself and on associated products and processes as well. However, there are few comparative studies on the effects of test-driven development. Thus, it is difficult to assess the potential process and product effects when applying test-driven development. In order to get an overview of the observed effects of test-driven development, an in-depth review of existing empirical studies was carried out. The results for ten different internal and external quality attributes indicate that test-driven development can reduce the amount of introduced defects and lead to more maintainable code. Parts of the implemented code may also be somewhat smaller in size and complexity. While maintenance of test-driven code can take less time, initial development may last longer. Besides the comparative analysis, this article sketches related work and gives an outlook on future research.Peer reviewe

    Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector

    Get PDF
    We report on several features present in the energy spectrum from an ultra low-noise germanium detector operated at 2,100 m.w.e. By implementing a new technique able to reject surface events, a number of cosmogenic peaks can be observed for the first time. We discuss several possible causes for an irreducible excess of bulk-like events below 3 keVee, including a dark matter candidate common to the DAMA/LIBRA annual modulation effect, the hint of a signal in CDMS, and phenomenological predictions. Improved constraints are placed on a cosmological origin for the DAMA/LIBRA effect.Comment: 4 pages, 4 figures. v2: submitted version. Minimal changes in wording, one reference adde
    • …
    corecore