1,391 research outputs found

    Light-Element Abundance Variations at Low Metallicity: the Globular Cluster NGC 5466

    Full text link
    We present low-resolution (R~850) spectra for 67 asymptotic giant branch (AGB), horizontal branch and red giant branch (RGB) stars in the low-metallicity globular cluster NGC 5466, taken with the VIRUS-P integral-field spectrograph at the 2.7-m Harlan J. Smith telescope at McDonald Observatory. Sixty-six stars are confirmed, and one rejected, as cluster members based on radial velocity, which we measure to an accuracy of 16 km s-1 via template-matching techniques. CN and CH band strengths have been measured for 29 RGB and AGB stars in NGC 5466, and the band strength indices measured from VIRUS-P data show close agreement with those measured from Keck/LRIS spectra previously taken of five of our target stars. We also determine carbon abundances from comparisons with synthetic spectra. The RGB stars in our data set cover a range in absolute V magnitude from +2 to -3, which permits us to study the rate of carbon depletion on the giant branch as well as the point of its onset. The data show a clear decline in carbon abundance with rising luminosity above the luminosity function "bump" on the giant branch, and also a subdued range in CN band strength, suggesting ongoing internal mixing in individual stars but minor or no primordial star-to-star variation in light-element abundances.Comment: 10 pages, emulateapj format, AJ accepte

    emiT: an apparatus to test time reversal invariance in polarized neutron decay

    Get PDF
    We describe an apparatus used to measure the triple-correlation term (\D \hat{\sigma}_n\cdot p_e\times p_\nu) in the beta-decay of polarized neutrons. The \D-coefficient is sensitive to possible violations of time reversal invariance. The detector has an octagonal symmetry that optimizes electron-proton coincidence rates and reduces systematic effects. A beam of longitudinally polarized cold neutrons passes through the detector chamber, where a small fraction beta-decay. The final-state protons are accelerated and focused onto arrays of cooled semiconductor diodes, while the coincident electrons are detected using panels of plastic scintillator. Details regarding the design and performance of the proton detectors, beta detectors and the electronics used in the data collection system are presented. The neutron beam characteristics, the spin-transport magnetic fields, and polarization measurements are also described.Comment: 15 pages, 13 figure

    SandflyMap: leveraging spatial data on sand fly vector distribution for disease risk assessments

    Get PDF
    We feature SandflyMap (www.sandflymap.org), a new map service within VectorMap (www.vectormap.org) that allows free public online access to global sand fly, tick and mosquito collection records and habitat suitability models. Given the short home range of sand flies, combining remote sensing and collection point data give a powerful insight into the environmental determinants of sand fly distribution. SandflyMap is aimed at medical entomologists, vector disease control workers, public health officials and health planners. Data are checked for geographical and taxonomic errors, and are comprised of vouchered specimen information, and both published and unpublished observation data. SandflyMap uses Microsoft Silverlight and ESRI’s ArcGIS Server 10 software platform to present disease vector data and relevant remote sensing layers in an online geographical information system format. Users can view the locations of past vector collections and the results of models that predict the geographic extent of individual species. Collection records are searchable and downloadable, and Excel collection forms with drop down lists, and Excel charts to country, are available for data contributors to map and quality control their data. SandflyMap makes accessible, and adds value to, the results of past sand fly collecting efforts. We detail the workflow for entering occurrence data from the literature to SandflyMap, using an example for sand flies from South America. We discuss the utility of SandflyMap as a focal point to increase collaboration and to explore the nexus between geography and vector-borne disease transmission

    Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector

    Get PDF
    We report on several features present in the energy spectrum from an ultra low-noise germanium detector operated at 2,100 m.w.e. By implementing a new technique able to reject surface events, a number of cosmogenic peaks can be observed for the first time. We discuss several possible causes for an irreducible excess of bulk-like events below 3 keVee, including a dark matter candidate common to the DAMA/LIBRA annual modulation effect, the hint of a signal in CDMS, and phenomenological predictions. Improved constraints are placed on a cosmological origin for the DAMA/LIBRA effect.Comment: 4 pages, 4 figures. v2: submitted version. Minimal changes in wording, one reference adde

    Experimental constraints on a dark matter origin for the DAMA annual modulation effect

    Get PDF
    A claim for evidence of dark matter interactions in the DAMA experiment has been recently reinforced. We employ a new type of germanium detector to conclusively rule out a standard isothermal galactic halo of Weakly Interacting Massive Particles (WIMPs) as the explanation for the annual modulation effect leading to the claim. Bounds are similarly imposed on a suggestion that dark pseudoscalars mightlead to the effect. We describe the sensitivity to light dark matter particles achievable with our device, in particular to Next-to-Minimal Supersymmetric Model candidates.Comment: v4: introduces recent results from arXiv:0807.3279 and arXiv:0807.2926. Sensitivity to pseudoscalars is revised in light of the first. Discussion on the subject adde

    Search for a T-odd, P-even Triple Correlation in Neutron Decay

    Get PDF
    Background: Time-reversal-invariance violation, or equivalently CP violation, may explain the observed cosmological baryon asymmetry as well as signal physics beyond the Standard Model. In the decay of polarized neutrons, the triple correlation D\cdot(p_{e}\timesp_{\nu}) is a parity-even, time-reversal- odd observable that is uniquely sensitive to the relative phase of the axial-vector amplitude with respect to the vector amplitude. The triple correlation is also sensitive to possible contributions from scalar and tensor amplitudes. Final-state effects also contribute to D at the level of 1e-5 and can be calculated with a precision of 1% or better. Purpose: We have improved the sensitivity to T-odd, P-even interactions in nuclear beta decay. Methods: We measured proton-electron coincidences from decays of longitudinally polarized neutrons with a highly symmetric detector array designed to cancel the time-reversal-even, parity-odd Standard-Model contributions to polarized neutron decay. Over 300 million proton-electron coincidence events were used to extract D and study systematic effects in a blind analysis. Results: We find D = [-0.94\pm1.89(stat)\pm0.97(sys)]e-4. Conclusions: This is the most sensitive measurement of D in nuclear beta decay. Our result can be interpreted as a measurement of the phase of the ratio of the axial-vector and vector coupling constants (CA/CV= |{\lambda}|exp(i{\phi}_AV)) with {\phi}_AV = 180.012{\deg} \pm0.028{\deg} (68% confidence level) or to constrain time-reversal violating scalar and tensor interactions that arise in certain extensions to the Standard Model such as leptoquarks. This paper presents details of the experiment, analysis, and systematic- error corrections.Comment: 21 pages, 22 figure

    A Monte Carlo simulation of the Sudbury Neutrino Observatory proportional counters

    Get PDF
    The third phase of the Sudbury Neutrino Observatory (SNO) experiment added an array of 3He proportional counters to the detector. The purpose of this Neutral Current Detection (NCD) array was to observe neutrons resulting from neutral-current solar neutrino-deuteron interactions. We have developed a detailed simulation of the current pulses from the NCD array proportional counters, from the primary neutron capture on 3He through the NCD array signal-processing electronics. This NCD array Monte Carlo simulation was used to model the alpha-decay background in SNO's third-phase 8B solar-neutrino measurement.Comment: 38 pages; submitted to the New Journal of Physic

    Comment on "Evidence for Neutrinoless Double Beta Decay"

    Get PDF
    We comment on the recent claim for the experimental observation of neutrinoless double-beta decay. We discuss several limitations in the analysis provided in that paper and conclude that there is no basis for the presented claim.Comment: A comment written to Modern Physics Letters A. 4 pages, no figures. Updated version, accepted for publicatio
    • …
    corecore