107 research outputs found
Factoring cardinal product graphs in polynomial time
AbstractIn this paper a polynomial algorithm for the prime factorization of finite, connected nonbipartite graphs with respect to the cardinal product is presented. This algorithm also decomposes finite, connected graphs into their prime factors with respect to the strong product and provides the basis for a new proof of the uniqueness of the prime factorization of finite, connected nonbipartite graphs with respect to the cardinal product. Furthermore, some of the consequences of these results and several open problems are discussed
Fast Recognition of Partial Star Products and Quasi Cartesian Products
This paper is concerned with the fast computation of a relation on the
edge set of connected graphs that plays a decisive role in the recognition of
approximate Cartesian products, the weak reconstruction of Cartesian products,
and the recognition of Cartesian graph bundles with a triangle free basis.
A special case of is the relation , whose convex closure
yields the product relation that induces the prime factor
decomposition of connected graphs with respect to the Cartesian product. For
the construction of so-called Partial Star Products are of particular
interest. Several special data structures are used that allow to compute
Partial Star Products in constant time. These computations are tuned to the
recognition of approximate graph products, but also lead to a linear time
algorithm for the computation of for graphs with maximum bounded
degree.
Furthermore, we define \emph{quasi Cartesian products} as graphs with
non-trivial . We provide several examples, and show that quasi
Cartesian products can be recognized in linear time for graphs with bounded
maximum degree. Finally, we note that quasi products can be recognized in
sublinear time with a parallelized algorithm
Boxicity and Cubicity of Product Graphs
The 'boxicity' ('cubicity') of a graph G is the minimum natural number k such
that G can be represented as an intersection graph of axis-parallel rectangular
boxes (axis-parallel unit cubes) in . In this article, we give estimates
on the boxicity and the cubicity of Cartesian, strong and direct products of
graphs in terms of invariants of the component graphs. In particular, we study
the growth, as a function of , of the boxicity and the cubicity of the
-th power of a graph with respect to the three products. Among others, we
show a surprising result that the boxicity and the cubicity of the -th
Cartesian power of any given finite graph is in and
, respectively. On the other hand, we show that there
cannot exist any sublinear bound on the growth of the boxicity of powers of a
general graph with respect to strong and direct products.Comment: 14 page
Recognizing graphs of acyclic cubical complexes
AbstractAcyclic cubical complexes have first been introduced by Bandelt and Chepoi in analogy to acyclic simplicial complexes. They characterized them by cube contraction and elimination schemes and showed that the graphs of acyclic cubical complexes are retracts of cubes characterized by certain forbidden convex subgraphs. In this paper we present an algorithm of time complexity O(mlogn) which recognizes whether a given graph G on n vertices with m edges is the graph of an acyclic cubical complex. This is significantly better than the complexity O(mn) of the fastest currently known algorithm for recognizing retracts of cubes in general
Über das schwache kartesische Produkt von Graphen
AbstractIt is shown that every connected graph has a unique prime factor decomposition with respect to the weak Cartesian product. The resulting close relationship between the automorphism group of a connected graph and the automorphism groups of its prime factors is used to derive theorems about the transitivity, regularity, and primitivity of these groups. With minor modifications all results also hold for set systems
- …