107 research outputs found

    Factoring cardinal product graphs in polynomial time

    Get PDF
    AbstractIn this paper a polynomial algorithm for the prime factorization of finite, connected nonbipartite graphs with respect to the cardinal product is presented. This algorithm also decomposes finite, connected graphs into their prime factors with respect to the strong product and provides the basis for a new proof of the uniqueness of the prime factorization of finite, connected nonbipartite graphs with respect to the cardinal product. Furthermore, some of the consequences of these results and several open problems are discussed

    Fast Recognition of Partial Star Products and Quasi Cartesian Products

    Get PDF
    This paper is concerned with the fast computation of a relation R\R on the edge set of connected graphs that plays a decisive role in the recognition of approximate Cartesian products, the weak reconstruction of Cartesian products, and the recognition of Cartesian graph bundles with a triangle free basis. A special case of R\R is the relation δ\delta^\ast, whose convex closure yields the product relation σ\sigma that induces the prime factor decomposition of connected graphs with respect to the Cartesian product. For the construction of R\R so-called Partial Star Products are of particular interest. Several special data structures are used that allow to compute Partial Star Products in constant time. These computations are tuned to the recognition of approximate graph products, but also lead to a linear time algorithm for the computation of δ\delta^\ast for graphs with maximum bounded degree. Furthermore, we define \emph{quasi Cartesian products} as graphs with non-trivial δ\delta^\ast. We provide several examples, and show that quasi Cartesian products can be recognized in linear time for graphs with bounded maximum degree. Finally, we note that quasi products can be recognized in sublinear time with a parallelized algorithm

    Abelian groups with identical relations

    Get PDF

    Boxicity and Cubicity of Product Graphs

    Full text link
    The 'boxicity' ('cubicity') of a graph G is the minimum natural number k such that G can be represented as an intersection graph of axis-parallel rectangular boxes (axis-parallel unit cubes) in RkR^k. In this article, we give estimates on the boxicity and the cubicity of Cartesian, strong and direct products of graphs in terms of invariants of the component graphs. In particular, we study the growth, as a function of dd, of the boxicity and the cubicity of the dd-th power of a graph with respect to the three products. Among others, we show a surprising result that the boxicity and the cubicity of the dd-th Cartesian power of any given finite graph is in O(logd/loglogd)O(\log d / \log\log d) and θ(d/logd)\theta(d / \log d), respectively. On the other hand, we show that there cannot exist any sublinear bound on the growth of the boxicity of powers of a general graph with respect to strong and direct products.Comment: 14 page

    Recognizing graphs of acyclic cubical complexes

    Get PDF
    AbstractAcyclic cubical complexes have first been introduced by Bandelt and Chepoi in analogy to acyclic simplicial complexes. They characterized them by cube contraction and elimination schemes and showed that the graphs of acyclic cubical complexes are retracts of cubes characterized by certain forbidden convex subgraphs. In this paper we present an algorithm of time complexity O(mlogn) which recognizes whether a given graph G on n vertices with m edges is the graph of an acyclic cubical complex. This is significantly better than the complexity O(mn) of the fastest currently known algorithm for recognizing retracts of cubes in general

    Über das schwache kartesische Produkt von Graphen

    Get PDF
    AbstractIt is shown that every connected graph has a unique prime factor decomposition with respect to the weak Cartesian product. The resulting close relationship between the automorphism group of a connected graph and the automorphism groups of its prime factors is used to derive theorems about the transitivity, regularity, and primitivity of these groups. With minor modifications all results also hold for set systems
    corecore