21 research outputs found

    In Vivo Efficacy of a Cocktail of Human Monoclonal Antibodies (CL184) Against Diverse North American Bat Rabies Virus Variants

    Get PDF
    Following rabies virus (RABV) exposure, a combination of thorough wound washing, multiple-dose vaccine administration and the local infiltration of rabies immune globulin (RIG) are essential components of modern post-exposure prophylaxis (PEP). Although modern cell-culture-based rabies vaccines are increasingly used in many countries, RIG is much less available. The prohibitive cost of polyclonal serum RIG products has prompted a search for alternatives and design of anti-RABV monoclonal antibodies (MAbs) that can be manufactured on a large scale with a consistent potency and lower production costs. Robust in vitro neutralization activity has been demonstrated for the CL184 MAb cocktail, a 1:1 protein mixture of two human anti-RABV MAbs (CR57/CR4098), against a large panel of RABV isolates. In this study, we used a hamster model to evaluate the efficacy of experimental PEP against a lethal challenge. Various doses of CL184 and commercial rabies vaccine were assessed for the ability to protect against lethal infection with representatives of four distinct bat RABV lineages of public health relevance: silver-haired bat (Ln RABV); western canyon bat (Ph RABV); big brown bat (Ef-w1 RABV) and Mexican free-tailed bat RABV (Tb RABV). 42–100% of animals survived bat RABV infection when CL184 (in combination with the vaccine) was administered. A dose-response relationship was observed with decreasing doses of CL184 resulting in increasing mortality. Importantly, CL184 was highly effective in neutralizing and clearing Ph RABV in vivo, even though CR4098 does not neutralize this virus in vitro. By comparison, 19–95% survivorship was observed if human RIG (20 IU/kg) and vaccine were used following challenge with different bat viruses. Based on our results, CL184 represents an efficacious alternative for RIG. Both large-scale and lower cost production could ensure better availability and affordability of this critical life-saving biologic in rabies enzootic countries and as such, significantly contribute to the reduction of human rabies deaths globally

    Comparison of an anti-rabies human monoclonal antibody combination with human polyclonal anti-rabies immune globulin

    Get PDF
    The World Health Organization estimates human mortality from endemic canine rabies to be 55,000 deaths/ year. Limited supply hampers the accessibility of appropriate lifesaving treatment, particularly in areas where rabies is endemic. Anti-rabies antibodies are key to protection against lethal rabies. Currently, only human and equine polyclonal anti-rabies immune globulin (HRIG and ERIG) is available. Replacement of HRIG and ERIG with a safer and more widely available product is recommended. We have recently identified a combination of 2 human monoclonal antibodies (MAbs), CR57 and CR4098, that has high potential. We here describe a head-to-head comparison between an CR57/CR4098 MAb cocktail and HRIG. The MAb cocktail neutralized all viruses from a panel of 26 representative street rabies virus isolates. In combination with vaccine, the MAb cocktail protected Syrian hamsters against lethal rabies when administered 24 h after exposure, comparable with the results obtained with HRIG. Furthermore, the MAb cocktail did not interfere with rabies vaccine differently from HRIG. These results demonstrate that the human MAb cocktail of CR57 and CR4098 is a safe and efficacious alternative to RIG in rabies postexposure prophylaxis. A recent World Health Organization publication estimated human mortality from endemic canine rabies to be 55,000 deaths/year Mouse MAbs, as well as human MAbs, have been shown to protect rodents from lethal RV challeng

    Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants

    Get PDF
    BACKGROUND: Experimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of potential neutralization escape variants will be required. Combinations of virus-neutralizing, noncompeting mAbs may have these properties. METHODS AND FINDINGS: Human mAb CR3014 has been shown to completely prevent lung pathology and abolish pharyngeal shedding of SARS-CoV in infected ferrets. We generated in vitro SARS-CoV variants escaping neutralization by CR3014, which all had a single P462L mutation in the glycoprotein spike (S) of the escape virus. In vitro experiments confirmed that binding of CR3014 to a recombinant S fragment (amino acid residues 318–510) harboring this mutation was abolished. We therefore screened an antibody-phage library derived from blood of a convalescent SARS patient for antibodies complementary to CR3014. A novel mAb, CR3022, was identified that neutralized CR3014 escape viruses, did not compete with CR3014 for binding to recombinant S1 fragments, and bound to S1 fragments derived from the civet cat SARS-CoV-like strain SZ3. No escape variants could be generated with CR3022. The mixture of both mAbs showed neutralization of SARS-CoV in a synergistic fashion by recognizing different epitopes on the receptor-binding domain. Dose reduction indices of 4.5 and 20.5 were observed for CR3014 and CR3022, respectively, at 100% neutralization. Because enhancement of SARS-CoV infection by subneutralizing antibody concentrations is of concern, we show here that anti-SARS-CoV antibodies do not convert the abortive infection of primary human macrophages by SARS-CoV into a productive one. CONCLUSIONS: The combination of two noncompeting human mAbs CR3014 and CR3022 potentially controls immune escape and extends the breadth of protection. At the same time, synergy between CR3014 and CR3022 may allow for a lower total antibody dose to be administered for passive immune prophylaxis of SARS-CoV infection

    Multiple eIF4GI-Specific Protease Activities Present in Uninfected and Poliovirus-Infected Cells

    No full text
    Cleavage of eukaryotic translation initiation factor 4GI (eIF4GI) is required for shutoff of host cell translation during poliovirus (PV) infection of HeLa cells. Reports published by several groups have led to confusion whether this cleavage is mediated by viral 2A protease (2A(pro)) or a putative cellular enzyme (termed eIF4Gase) which is activated by 2A(pro) or other aspects of viral infection. Here we have further investigated eIF4Gase activities in PV-infected cells. Column purification of eIF4GI cleavage activity separated two activities which generated N-terminal cleavage products of different lengths. Both activities were detected using either native eIF4G or radiolabeled recombinant eIF4G as the substrate. Analysis of cleavage products formed by each activity on native and mutant substrates suggests that one activity cleaves eIF4G1 at or very near the 2A(pro) cleavage site and the other activity cleaves approximately 40 residues upstream of the 2A(pro) cleavage site. When PV infections in HeLa cells were supplemented with 2 mM guanidine, which indirectly limits expression of 2A(pro), two distinct C-terminal cleavage fragments of eIF4GI were detected. These C-terminal cleavage fragments of eIF4GI were purified from infected cells, and a new eIF4GI cleavage site was mapped to a unique site 43 amino acids upstream of the known 2A(pro) cleavage site. Further, eIF4GI cleavage in vivo could be blocked by addition of zVAD to PV-guanidine infections. zVAD is a broad-spectrum caspase inhibitor which had no effect on 2A(pro) cleavage activity or PV polyprotein processing. Lastly, similar types of eIF4Gase cleavage activities were also detected in uninfected cells under various conditions, including early apoptosis or during cell cycle transit. The data suggest that the same types of eIF4GI cleavage activities which are generated in PV-infected cells can also be generated in the absence of virus. Taken together, the data support a model in which multiple cellular activities process eIF4GI in PV-infected cells, in addition to 2A(pro)

    A human monoclonal antibody cocktail as a novel component of rabies postexposure prophylaxis

    No full text
    The currently recommended treatment for individuals exposed to rabies virus is the combined administration of rabies vaccine and rabies immune globulin (RIG). This review sets out the criteria used to guide development of a cocktail of human monoclonal antibodies as a replacement for RIG. Using this process as a model, the general requirements for development of safe and efficacious monoclonal antibody alternatives to currently used polyclonal serum products are discusse

    An inactivated poliovirus vaccine using Sabin strains produced on the serum-free PER.C6® cell culture platform is immunogenic and safe in a non-human primate model

    No full text
    Background: The World Health Organization recommends the development of affordable next-generation inactivated poliovirus vaccines (IPV) using attenuated poliovirus Sabin strains. Previously, we introduced a novel PER.C6® cell culture platform, which allows for high yield production of an affordable trivalent Sabin IPV vaccine. Methods: Immunogenicity and safety of this novel PER.C6®-based Sabin-IPV (sIPV) was assessed in rats and non-human primates (NHPs). NHPs received one of four different dose dilutions vaccine according to current human schedule (three prime-immunizations and one boost immunization). For comparison, NHPs received commercially available reference Salk IPV or sIPV. Results: Dose-dependent immunogenicity and good tolerability was observed for the PER.C6®-based sIPV formulations in rats and NHPs. In NHPs, the lowest tested dose that induced anti-Sabin virus-neutralizing antibody titers that were non-inferior to commercial sIPV after three immunizations was 5-7.5-25 D-antigen units for type 1, 2 and 3 respectively. Discussion: PER.C6®-based sIPV induced comparable immunogenicity to commercial Salk IPV and sIPV vaccines in NHPs. Together with the absence of any preclinical safety signals, these data warrant further testing in clinical trials. sIPV produced on the PER.C6® cell platform could be one solution to the need for an affordable and immunogenic IPV to achieve and maintain global polio eradication

    Validation of the rapid fluorescent focus inhibition test (RFFIT) for rabies virus neutralizing antibodies in clinical samples

    No full text
    Monoclonal antibodies are successful biologics in treating a variety of diseases, including the prevention or treatment of viral infections. CL184 is a 1:1 combination of two human monoclonal IgG1 antibodies (CR57 and CR4098) against rabies virus, produced in the PER.C6 human cell line. The two antibodies are developed as replacements of human rabies immune globulin (HRIG) and equine rabies immune globulin (ERIG) in postexposure prophylaxis (PEP). The rapid fluorescent focus inhibition test (RFFIT) is a cell-based virus neutralization assay which is usually performed to determine the biological potency of a vaccine and to measure the levels of protection against rabies in humans and animals. In order to confirm the suitability of this assay as a pharmacodynamic assay, we conducted a validation using both HRIG- and CL184-spiked serum samples and sera from vaccinated donors. The validation results met all analytical acceptance criteria and showed that HRIG and CL184 serum concentrations can be compared. Stability experiments showed that serum samples were stable in various suboptimal conditions but that rabies virus should be handled swiftly once thawed. We concluded that the assay is suitable for the measurement of polyclonal and monoclonal rabies neutralizing antibodies in clinical serum samples
    corecore