355 research outputs found
Social Equality and the Corporate Governance of a Property-Owning Democracy
In recent years, a number of theorists have argued that Rawls's vision of a property-owning democracy seems like a promising way to institutionalise an ideal of social equality. In this paper, I distinguish two economic aims that appear central to these accounts of social equality: widespread security and control. I then argue that, insofar as Rawls's property-owning democracy retains many large-scale corporations, it is poorly placed to realise these two economic aims unless it is supplemented with an adequate regime of corporate governance. I go on to assess three possible regimes of corporate governance for a property-owning democracy: (1) investment fund activism; (2) worker-managed firms; and (3) labour-capital partnerships. I argue that all three regimes offer different trade-offs between widespread economic security and control; however, there are social egalitarian reasons – albeit of a provisional nature – to see regime (3) as a superior option to regimes (1) and (2). / Nos últimos anos, uma série de teóricos tem argumentado que a visão de Rawls de uma democracia de proprietários parece ser uma maneira promissora de institucionalizar um ideal de igualdade social. Neste artigo, faço a distinção entre dois objetivos económicos que parecem importantes em termos de igualdade social: a generalização da segurança e do controlo. Defendo então que, na medida em que a democracia de proprietários de Rawls permite manter muitas grandes empresas, é incapaz de concretizar estes dois objetivos económicos exceto se for complementada com um regime adequado de governo das empresas. Prossigo avaliando três possíveis regimes de governo das empresas para uma democracia de proprietários: (1) ativismo de fundos de investimento; (2) empresas geridas pelos trabalhadores; e (3) parcerias trabalho/capital. Defendo que estes três regimes oferecem diferentes trade-offs entre a segurança económica e o controlo generalizados; porém, há razões sociais e igualitárias – embora de natureza provisória – para ver o regime (3) como uma opção superior aos regimes (1) e (2)
BSE situation and establishment of Food Safety Commission in Japan
Eight major policies were implemented by Japanese Government since Oct. 2001, to deal with bovine spongiform encephalopathy (BSE). These are; 1) Surveillance in farm by veterinarian, 2) Prion test at healthy 1.3mi cows/yr, by veterinarian, 3) Elimination of specified risk material (SRM), 4) Ban of MBM for production, sale use, 5) Prion test for fallen stocks, 6) Transparent information and traceability, 7) New Measures such as Food Safety Basic Law, and 8) Establish of Food Safety Commission in the Cabinet Office. At this moment, the extent of SRM risk has only been indicated by several reports employing tests with a limited sensitivity. There is still a possibility that the items in the SRM list will increase in the future, and this indiscriminately applies to Japanese cattle as well. Although current practices of SRM elimination partially guarantee total food safety, additional latent problems and imminent issues remain as potential headaches to be addressed. If the index of SRM elimination cannot guarantee reliable food safety, we have but to resort to total elimination of tissues from high risk-bearing and BSE-infected animals. However, current BSE tests have their limitations and can not yet completely detect high-risk and/or infected animals. Under such circumstances, tissues/wastes and remains of diseased, affected fallen stocks and cohort animals have to be eliminated to prevent BSE invading the human food chain systems. The failure to detect any cohort should never be allowed to occur, and with regular and persistent updating of available stringent records, we are at least adopting the correct and useful approach as a reawakening strategy to securing food safety. In this perspective, traceability based on a National Identification System is required
Evidence for more cost-effective surveillance options for bovine spongiform encephalopathy (bse) and scrapie in Great Britain
Transmissible spongiform encephalopathies (TSEs) are an important public health concern. Since the emergence of bovine spongiform encephalopathy (BSE) during the 1980s and its link with human Creutzfeldt- Jakob disease, active surveillance has been a key element of the European Union’s TSE control strategy. Success of this strategy means that now, very few cases are detected compared with the number of animals tested. Refining surveillance strategies would enable resources to be redirected towards other public health priorities. Cost-effectiveness analysis was performed on several alternative strategies involving reducing the number of animals tested for BSE and scrapie in Great Britain and, for scrapie, varying the ratio of sheep sampled in the abattoir to fallen stock (which died on the farm). The most cost-effective strategy modelled for BSE involved reducing the proportion of fallen stock tested from 100% to 75%, producing a cost saving of ca GBP 700,000 per annum. If 50% of fallen stock were tested, a saving of ca GBP 1.4 million per annum could be achieved. However, these reductions are predicted to increase the period before surveillance can detect an outbreak. For scrapie, reducing the proportion of abattoir samples was the most costeffective strategy modelled, with limited impact on surveillance effectiveness
Lesion Profiling at Primary Isolation in RIII Mice is Insufficient in Distinguishing BSE from Classical Scrapie
Primary isolation of bovine spongiform encephalopathy (BSE) in RIII mice generates a lesion profile believed to be reproducible and distinct from that produced by classical scrapie. This profile, which is characterized by peaks at gray matter areas 1, 4 and 7 (dorsal medulla, hypothalamus and septal nuclei), is used to diagnose BSE on primary isolation. The aim of this study was to investigate whether the BSE agent could be present in sheep diagnosed with classical scrapie, using lesion profiles in RIII mice as a discriminatory method. Sixty-two positive scrapie field cases were collected from individual farms between 1996 and 1999 and bioassayed in RIII mice. Fifty-five of these isolates transmitted successfully to at least one mouse. Of the 31 that produced adequate data to allow lesion profile analysis, 10 showed a consistent profile with peaks at brain areas 1, 4 and 7. All inocula for this subgroup were derived from sheep of genotype ARQ/ARQ. While the 1-4-7-scrapie profile exhibited similarities to BSE in RIII mice at primary isolation, it was distinguishable based on histopathology, immunohistochemistry and cluster analysis. We conclude that caution should be taken to distinguish this profile from BSE and that additional parameters should be considered to reach a final diagnosis
Environmental Sources of Prion Transmission in Mule Deer
Whether transmission of the chronic wasting disease (CWD) prion among cervids requires direct interaction with infected animals has been unclear. We report that CWD can be transmitted to susceptible animals indirectly, from environments contaminated by excreta or decomposed carcasses. Under experimental conditions, mule deer (Odocoileus hemionus) became infected in two of three paddocks containing naturally infected deer, in two of three paddocks where infected deer carcasses had decomposed in situ ≈1.8 years earlier, and in one of three paddocks where infected deer had last resided 2.2 years earlier. Indirect transmission and environmental persistence of infectious prions will complicate efforts to control CWD and perhaps other animal prion diseases
Knock-on community impacts of a novel vector: spillover of emerging DWV-B from Varroa-infested honeybees to wild bumblebees.
This is the final version. Available from the publisher via the DOI in this record.The Sanger sequences that support the findings of this study have been deposited in GenBank with virus accession codes MG264907‐MG265503 and Nosema accession codes MK942707‐MK942712; SMRT reads have been archived in NCBI's Sequence Read Archive with BioProject accession number PRJNA542789. Prevalence and qPCR data that support the findings will be available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.70jt240.Novel transmission routes can directly impact the evolutionary ecology of infectious diseases, with potentially dramatic effect on host populations and knock-on effects on the wider host community. The invasion of Varroa destructor, an ectoparasitic viral vector in Western honeybees, provides a unique opportunity to examine how a novel vector affects disease epidemiology in a host community. This specialist honeybee mite vectors deformed wing virus (DWV), an important re-emerging honeybee pathogen that also infects wild bumblebees. Comparing island honeybee and wild bumblebee populations with and without V. destructor, we show that V. destructor drives DWV prevalence and titre in honeybees and sympatric bumblebees. Viral genotypes are shared across hosts, with the potentially more virulent DWV-B overtaking DWV-A in prevalence in a current epidemic. This demonstrates disease emergence across a host community driven by the acquisition of a specialist novel transmission route in one host, with dramatic community level knock-on effects
Sheep Feed and Scrapie, France
Proprietary concentrates and milk replacers were linked to risk for scrapie
Different prion disease phenotypes result from inoculation of cattle with two temporally separated sources of sheep scrapie from Great Britain
BACKGROUND: Given the theoretical proposal that bovine spongiform encephalopathy (BSE) could have originated from sheep scrapie, this study investigated the pathogenicity for cattle, by intracerebral (i.c.) inoculation, of two pools of scrapie agents sourced in Great Britain before and during the BSE epidemic. Two groups of ten cattle were each inoculated with pools of brain material from sheep scrapie cases collected prior to 1975 and after 1990. Control groups comprised five cattle inoculated with sheep brain free from scrapie, five cattle inoculated with saline, and for comparison with BSE, naturally infected cattle and cattle i.c. inoculated with BSE brainstem homogenate from a parallel study. Phenotypic characterisation of the disease forms transmitted to cattle was conducted by morphological, immunohistochemical, biochemical and biological methods. RESULTS: Disease occurred in 16 cattle, nine inoculated with the pre-1975 inoculum and seven inoculated with the post-1990 inoculum, with four cattle still alive at 83 months post challenge (as at June 2006). The different inocula produced predominantly two different disease phenotypes as determined by histopathological, immunohistochemical and Western immunoblotting methods and biological characterisation on transmission to mice, neither of which was identical to BSE. Whilst the disease presentation was uniform in all scrapie-affected cattle of the pre-1975 group, the post-1990 inoculum produced a more variable disease, with two animals sharing immunohistochemical and molecular profile characteristics with animals in the pre-1975 group. CONCLUSION: The study has demonstrated that cattle inoculated with different pooled scrapie sources can develop different prion disease phenotypes, which were not consistent with the phenotype of BSE of cattle and whose isolates did not have the strain typing characteristics of the BSE agent on transmission to mice
Using Human Disease Outbreaks as a Guide to Multilevel Ecosystem Interventions
Human health often depends on environmental variables and is generally subject to widespread and comprehensive surveillance. Compared with other available measures of ecosystem health, human disease incidence may be one of the most useful and practical bioindicators for the often elusive gauge of ecologic well-being. We argue that many subtle ecosystem disruptions are often identified only as a result of detailed epidemiologic investigations after an anomalous increase in human disease incidence detected by routine surveillance mechanisms. Incidence rates for vector-mediated diseases (e.g., arboviral illnesses) and direct zoonoses (e.g., hantaviruses) are particularly appropriate as bioindicators to identify underlying ecosystem disturbances. Outbreak data not only have the potential to act as a pivotal warning system for ecosystem disruption, but may also be used to identify interventions for the preservation of ecologic health. With this approach, appropriate ecologically based strategies for remediation can be introduced at an earlier stage than would be possible based solely on environmental monitoring, thereby reducing the level of “ecosystem distress” as well as resultant disease burden in humans. This concept is discussed using local, regional, and global examples, thereby introducing the concept of multilevel ecosystem interventions
- …