5,208 research outputs found
Joint source-channel coding for a quantum multiple access channel
Suppose that two senders each obtain one share of the output of a classical,
bivariate, correlated information source. They would like to transmit the
correlated source to a receiver using a quantum multiple access channel. In
prior work, Cover, El Gamal, and Salehi provided a combined source-channel
coding strategy for a classical multiple access channel which outperforms the
simpler "separation" strategy where separate codebooks are used for the source
coding and the channel coding tasks. In the present paper, we prove that a
coding strategy similar to the Cover-El Gamal-Salehi strategy and a
corresponding quantum simultaneous decoder allow for the reliable transmission
of a source over a quantum multiple access channel, as long as a set of
information inequalities involving the Holevo quantity hold.Comment: 21 pages, v2: minor changes, accepted into Journal of Physics
Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes
Quantum convolutional codes, like their classical counterparts, promise to
offer higher error correction performance than block codes of equivalent
encoding complexity, and are expected to find important applications in
reliable quantum communication where a continuous stream of qubits is
transmitted. Grassl and Roetteler devised an algorithm to encode a quantum
convolutional code with a "pearl-necklace encoder." Despite their theoretical
significance as a neat way of representing quantum convolutional codes, they
are not well-suited to practical realization. In fact, there is no
straightforward way to implement any given pearl-necklace structure. This paper
closes the gap between theoretical representation and practical implementation.
In our previous work, we presented an efficient algorithm for finding a
minimal-memory realization of a pearl-necklace encoder for
Calderbank-Shor-Steane (CSS) convolutional codes. This work extends our
previous work and presents an algorithm for turning a pearl-necklace encoder
for a general (non-CSS) quantum convolutional code into a realizable quantum
convolutional encoder. We show that a minimal-memory realization depends on the
commutativity relations between the gate strings in the pearl-necklace encoder.
We find a realization by means of a weighted graph which details the
non-commutative paths through the pearl-necklace. The weight of the longest
path in this graph is equal to the minimal amount of memory needed to implement
the encoder. The algorithm has a polynomial-time complexity in the number of
gate strings in the pearl-necklace encoder.Comment: 16 pages, 5 figures; extends paper arXiv:1004.5179v
The squashed entanglement of the noiseless quantum Gaussian attenuator and amplifier
We determine the maximum squashed entanglement achievable between sender and
receiver of the noiseless quantum Gaussian attenuators and amplifiers and we
prove that it is achieved sending half of an infinitely squeezed two-mode
vacuum state. The key ingredient of the proof is a lower bound to the squashed
entanglement of the quantum Gaussian states obtained applying a two-mode
squeezing operation to a quantum thermal Gaussian state tensored with the
vacuum state. This is the first lower bound to the squashed entanglement of a
quantum Gaussian state and opens the way to determine the squashed entanglement
of all quantum Gaussian channels. Moreover, we determine the classical squashed
entanglement of the quantum Gaussian states above and show that it is strictly
larger than their squashed entanglement. This is the first time that the
classical squashed entanglement of a mixed quantum Gaussian state is
determined
Renyi generalizations of the conditional quantum mutual information
The conditional quantum mutual information of a tripartite state
is an information quantity which lies at the center of many
problems in quantum information theory. Three of its main properties are that
it is non-negative for any tripartite state, that it decreases under local
operations applied to systems and , and that it obeys the duality
relation for a four-party pure state on systems . The
conditional mutual information also underlies the squashed entanglement, an
entanglement measure that satisfies all of the axioms desired for an
entanglement measure. As such, it has been an open question to find R\'enyi
generalizations of the conditional mutual information, that would allow for a
deeper understanding of the original quantity and find applications beyond the
traditional memoryless setting of quantum information theory. The present paper
addresses this question, by defining different -R\'enyi generalizations
of the conditional mutual information, some of which we can
prove converge to the conditional mutual information in the limit
. Furthermore, we prove that many of these generalizations
satisfy non-negativity, duality, and monotonicity with respect to local
operations on one of the systems or (with it being left as an open
question to prove that monotoniticity holds with respect to local operations on
both systems). The quantities defined here should find applications in quantum
information theory and perhaps even in other areas of physics, but we leave
this for future work. We also state a conjecture regarding the monotonicity of
the R\'enyi conditional mutual informations defined here with respect to the
R\'enyi parameter . We prove that this conjecture is true in some
special cases and when is in a neighborhood of one.Comment: v6: 53 pages, final published versio
Quantum enigma machines and the locking capacity of a quantum channel
The locking effect is a phenomenon which is unique to quantum information
theory and represents one of the strongest separations between the classical
and quantum theories of information. The Fawzi-Hayden-Sen (FHS) locking
protocol harnesses this effect in a cryptographic context, whereby one party
can encode n bits into n qubits while using only a constant-size secret key.
The encoded message is then secure against any measurement that an eavesdropper
could perform in an attempt to recover the message, but the protocol does not
necessarily meet the composability requirements needed in quantum key
distribution applications. In any case, the locking effect represents an
extreme violation of Shannon's classical theorem, which states that
information-theoretic security holds in the classical case if and only if the
secret key is the same size as the message. Given this intriguing phenomenon,
it is of practical interest to study the effect in the presence of noise, which
can occur in the systems of both the legitimate receiver and the eavesdropper.
This paper formally defines the locking capacity of a quantum channel as the
maximum amount of locked information that can be reliably transmitted to a
legitimate receiver by exploiting many independent uses of a quantum channel
and an amount of secret key sublinear in the number of channel uses. We provide
general operational bounds on the locking capacity in terms of other well-known
capacities from quantum Shannon theory. We also study the important case of
bosonic channels, finding limitations on these channels' locking capacity when
coherent-state encodings are employed and particular locking protocols for
these channels that might be physically implementable.Comment: 37 page
Geothermal probabilistic cost study
A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined
Multi-storey building retrofit with a focus on the façade selection process: A UK commercial office case study
Fulltext in: http://www.arcom.ac.uk/-docs/proceedings/ar2013-0081-0090_Garmston_Fox_Pan_de%20Wilde.pdfPoorly-insulated existing buildings contribute significantly to the energy use of the built environment. In the UK, the existing building stock is replaced at a rate of less than 2% a year; thus, many of today’s buildings will still be in use in 2060. Retrofitting aged buildings can significantly reduce their energy use. This paper analyses the selection process and success factors in retrofit façade decision-making. Literature relating to building retrofit and façade selection is reviewed. A case study is conducted on a five-storey 1970s UK commercial office building, retrofitted in 2011. Data is collected via in-depth interviews with key project decision-makers, a documentary evidence review, and thermography of the completed retrofitted façade. The façade evolution is mapped according to seven identified project stages and the RIBA Plan of Work 2007. The retrofit satisfied the client’s aesthetic needs, while delivering an 85% reduction in the ’wall’ U-value and a ’B’ rated Energy Performance Certificate. Value engineering (VE) greatly influenced the façade selection, with less expensive alternatives replacing original elements of the façade design. The façade’s thermal success is linked to the VE focusing on façade elements covering only a small extent of the building. Façade success factors key to attracting tenants (lower running costs and aesthetics) may apply to commercial buildings in general. Thermography aided in assessing the retrofitted thermal envelope, but to act as a tool to aid retrofit façade selection, it should ideally involve a ’before’ and ’after’ survey
Ultraviolet-laser induced desorption of NO from the Cr<sub>2</sub>O<sub>3</sub>(0001) surface: Involvement of a precursor state?
NO molecules interact with the Cr2O3(0001) surface to form a chemisorption bond of 1.0 eV. At higher coverages an additional more weakly bound species appears in thermal desorption spectra with a binding energy of 0.35 eV. By infrared spectroscopy the weakly adsorbed species is identified to be an unusually strong bound NO-dimer exhibiting a weak feature at 1857 cm−1 beside the chemisorbate absorption band at 1794 cm−1. Laser induced desorption experiments performed at 6.4 eV are presented with main emphasis on the high coverage regime. The desorbing molecules are detected quantum state selectively using resonance enhanced multiphoton ionization. The desorbing molecules are strongly rotationally and vibrationally excited conform with a nonthermal excitation process. The velocity distributions of single rovibronic states of desorbing NO are bimodal and exhibit a strong coupling of rotation and translation. With increasing coverages an additional channel is observed appearing in the time-of-flight spectra of ν“=0 as smoothly increasing intensity at long flight times. The numeric values of these unusually long flight times are indicative for long residence times on the surface rather than small kinetic energies. The desorption efficiencies weakly depend on the concentration and vibrational state ranging from (2.0±0.3)x10−17cm2 at low coverages to (1.0±0.4)x10−17cm2 at high coverages for ν“=0. The intensity of the desorption signal per laser pulse only increases proportional to the chemisorbate coverage. The data are interpreted assuming the dimers to act as extrinsic precursors within the desorption process
- …