142 research outputs found

    Machine vision for space telerobotics and planetary rovers

    Get PDF
    Machine vision allows a non-contact means of determining the three-dimensional shape of objects in the environment, enabling the control of contact forces when manipulation by a telerobot or traversal by a vehicle is desired. Telerobotic manipulation in Earth orbit requires a system that can recognize known objects in spite of harsh lighting conditions and highly specular or absorptive surfaces. Planetary surface traversal requires a system that can recognize the surface shape and properties of an unknown and arbitrary terrain. Research on these two rather disparate types of vision systems is described

    Time-delayed operation of a telerobot via geosynchronous relay

    Get PDF
    Operation of a telerobot is compromised if a time delay of more than a few hundred milliseconds exists between the operator and remote manipulator. However, the most economically attractive way to perform telerobotic functions such as assembly, maintenance, and repair in Earth orbit is via geosynchronous relay satellites to a ground-based operator. This induces loop delays from one-half to two seconds, depending on how many relays are involved. Such large delays makes direct master-slave, force-reflecting teleoperated systems infeasible. Research at JPL on a useful telerobot that operates with such time delays is described

    Inflatable Hangar for Assembly of Large Structures in Space

    Get PDF
    The NASA Human Space Flight program is interested in projects where humans, beyond low-Earth orbit (LEO), can make an important and unique contribution that cannot be reasonably accomplished purely by robotic means, and is commensurate with the effort and cost associated with human spaceflight. Robotic space telescope missions have been conceived and launched as completed assemblies (e.g., Hubble) or as jack-in-the-box one-time deployments (e.g., James Webb). If it were possible to assemble components of a very large telescope from one or two launches into a telescope that was vastly greater in light-gathering power and resolution, that would constitute a breakthrough. Large telescopes on Earth, like all one-off precision assembly tasks, are done by humans. Humans in shirtsleeves (or cleanroom bunny suits) can perform tasks of remarkable dexterity and precision. Unfortunately, astronauts in pressure suits cannot perform such dexterous and precise tasks because of the limitations of the pressurized gloves. If a large, inflatable hangar were placed in high orbit, along with all the components needed for a large assembly such as a large telescope, then humans in bunny suits could perform the same sorts of extremely precise and dexterous assembly that they could be expected to perform on Earth. Calculations show that such an inflatable hangar, and the necessary gas to make it safe to occupy by shirtsleeves humans wearing oxygen masks, fits within the mass and volume limitations of the proposed "Space Launch System" heavy-lift rocket. A second launch could bring up all the components of an approximately 100-meter-diameter or larger telescope. A large [200 ft (approximately 61 m) in diameter] inflated fabric sphere (or hangar) would contain four humans in bunny suits. The sphere would contain sufficient atmospheric pressure so that spacesuits would not be necessary [about 3.2 psi (approximately 22 kPa)]. The humans would require only oxygen masks and small backpacks similar to SCUBA tanks. The oxygen content of the gas would be about 35%, low enough to reduce fire risk but high enough to sustain life in the event of a failure of an oxygen mask. The bunnysuited astronauts could ride on long "cherry-picker" robots with foot restraints somewhat similar to the arm on the International Space Station. Other astronauts would maneuver freely with small propeller fans on their backpacks to provide thrust in the zero-g environment

    Non-geometric hazard detection for a Mars microrover

    Get PDF
    The sinkage and slippage detection methodologies employed by a MESUR Pathfinder microrover, Rocky 3.2, are discussed. Results from a simulation are presented

    High mobility vehicle

    Get PDF
    A vehicle, for driving over a ground surface, has a body with a left side, a right side, a front and a back. The vehicle includes left and right drive mechanisms. Each mechanism includes first and second traction elements for engaging the ground surface and transmitting a driving force between the vehicle and ground surface. Each mechanism includes first and second arms coupled to the first and second traction elements for relative rotation about first and second axis respectively. Each mechanism includes a rotor having a third axis, the rotor coupled to the body for rotation about the third axis and coupled to the first and second arms for relative rotation about the third axis. The mechanism includes first and second drive motors for driving the first and second traction elements and first and second transmissions, driven by the first and second motors and engaging the rotor. Driving the first and second traction elements simultaneously rotates the rotor relative to the first and second arms, respectively

    Method for surmounting an obstacle by a robot vehicle

    Get PDF
    Surmounting obstacles in the path of a robot vehicle is accomplished by rotating the wheel forks of the vehicle about their transverse axes with respect to the vehicle body so as to shift most of the vehicle weight onto the rear wheels, and then driving the vehicle forward so as to drive the now lightly-loaded front wheels (only) over the obstacle. Then, after the front wheels have either surmounted or completely passed the obstacle (depending upon the length of the obstacle), the forks are again rotated about their transverse axes so as to shift most of the vehicle weight onto the front wheels. Then the vehicle is again driven forward so as to drive the now lightly-loaded rear wheels over the obstacle. Once the obstacle has been completely cleared and the vehicle is again on relatively level terrain, the forks are again rotated so as to uniformly distribute the vehicle weight between the front and rear wheels

    Systems and Methods for Implementing Tailored Metallic Glass-Based Strain Wave Gears and Strain Wave Gear Components

    Get PDF
    Systems and methods in accordance with embodiments of the invention implement tailored metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a method of fabricating a flexspline of a strain wave gear includes: forming a MG-based composition into a flexspline using one of a thermoplastic forming technique and a casting technique; where the forming of the MG-based composition results in a formed MG-based material; where the formed flexspline is characterized by: a minimum thickness of greater than approximately 1 mm and a major diameter of less than approximately 4 inches

    Microwave Sinterator Freeform Additive Construction System (MS-FACS)

    Get PDF
    The harmful properties of lunar dust, such as small size, glass composition, abnormal surface area, and coatings of imbedded nanophase iron, lead to a unique coupling of the dust with microwave radiation. This coupling can be exploited for rapid sintering of lunar soil for use as a construction material that can be formed to take on an infinite number of shapes and sizes. This work describes a system concept for building structures on the lunar surface using lunar regolith (soil). This system uses the ATHLETE (All-Terrain Hex- Limbed Extra-Terrestrial Explorer) mobility system as a positioning system with a microwave print head (similar to that of a smaller-scale 3D printer). A processing system delivers the lunar regolith to the microwave print head, where the microwave print head/chamber lays down a layer of melted regolith. An arm on the ATHLETE system positions the layer depending on the desired structure

    Religious Identity, Religious Attendance, and Parental Control

    Full text link
    Using a national sample of adolescents aged 10–18 years and their parents (N = 5,117), this article examines whether parental religious identity and religious participation are associated with the ways in which parents control their children. We hypothesize that both religious orthodoxy and weekly religious attendance are related to heightened levels of three elements of parental control: monitoring activities, normative regulations, and network closure. Results indicate that an orthodox religious identity for Catholic and Protestant parents and higher levels of religious attendance for parents as a whole are associated with increases in monitoring activities and normative regulations of American adolescents

    Relationship between bacterial strain type, host biomarkers, and mortality in clostridium difficile infection

    Get PDF
    Background: Despite substantial interest in biomarkers, their impact on clinical outcomes and variation with bacterial strain has rarely been explored using integrated databases. Methods: From September 2006 to May 2011, strains isolated from Clostridium difficile toxin enzyme immunoassay (EIA)-positive fecal samples from Oxfordshire, United Kingdom (approximately 600 000 people) underwent multilocus sequence typing. Fourteen-day mortality and levels of 15 baseline biomarkers were compared between consecutive C. difficile infections (CDIs) from different clades/sequence types (STs) and EIA-negative controls using Cox and normal regression adjusted for demographic/clinical factors. Results: Fourteen-day mortality was 13% in 2222 adults with 2745 EIA-positive samples (median, 78 years) vs 5% in 20 722 adults with 27 550 EIA-negative samples (median, 74 years) (absolute attributable mortality, 7.7%; 95% CI, 6.4%-9.0%). Mortality was highest in clade 5 CDIs (25% [16 of 63]; polymerase chain reaction (PCR) ribotype 078/ST 11), then clade 2 (20% [111 of 560]; 99% PCR ribotype 027/ST 1) versus clade 1 (12% [137 of 1168]; adjusted P <. 0001). Within clade 1, 14-day mortality was only 4% (3 of 84) in ST 44 (PCR ribotype 015) (adjusted P =. 05 vs other clade 1). Mean baseline neutrophil counts also varied significantly by genotype: 12.4, 11.6, and 9.5 × 109 neutrophils/L for clades 5, 2 and 1, respectively, vs 7.0 × 109 neutrophils/L in EIA-negative controls (P <. 0001) and 7.9 × 109 neutrophils/L in ST 44 (P =. 08). There were strong associations between C. difficile-type-specific effects on mortality and neutrophil/white cell counts (rho = 0.48), C-reactive-protein (rho = 0.43), eosinophil counts (rho =-0.45), and serum albumin (rho =-0.47). Biomarkers predicted 30%-40% of clade-specific mortality differences. Conclusions: C. difficile genotype predicts mortality, and excess mortality correlates with genotype-specific changes in biomarkers, strongly implicating inflammatory pathways as a major influence on poor outcome after CDI. PCR ribotype 078/ST 11 (clade 5) leads to severe CDI; thus ongoing surveillance remains essential
    • …
    corecore