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Abstract 

Non-geometric hazards (i.e., those which cannot 
be characterized soley by their shape, but 
instead are related to mechanical properties 
such as strength and friction) may pose a 
significant risk to planetary rovers. This paper 
describes a means for an articulated vehicle to 
detect sinkage and slippage in such material so 
as to prevent entrapment and to correct for 
dead-reckoning errors. Simulation results and 
preliminary indications of test data are 
described. 

Introduction 

For an exploring vehicle to move safely over the 
surface of another planet, it is potentially 
important to know if the vehicle is sinking into 
very soft surface material or is experiencing 
high levels of wheel slip. For example, at the 
Viking 1 landing site, about 14% of the surface 
is drift material, and one of the landing legs 
sank 17 cm into that material.' Previous 
studies of non-geometric hazard detection for 
planetary rovers, which assumed very large 
(-1000 Kg) rovers, have focussed on Ground 
Penetrating Radar to detect subsurface 
hazards.*v3 However, mass and power 
constraints for microrover missions lead us to 
desire means to detect these hazards without 
requiring additional mass, power, or complexity 
beyond the basic vehicle configuration. 

For the purposes of this discussion, we consider 
the mission model of NASA's Mars Environmental 
Survey (MESUR) Pathfinder project, scheduled 
for launch to Mars in November, 1996. In this 
mission, a microrover with a mass of under 10 
Kg will traverse over the terrain within a few 
tens or hundreds of meters from it's lander to 
goal points selected by ground-based analysis of 
images taken by lander stereo cameras. These 
goal points are selected for their scientific 
interest, and it is important that they be 
approached quite accurately (for example to take 

a spectrum of a particular rock). I.hus safety 
and improvement in the accuracy of 
dead-reckoning navigation are important reasons 
to develop a reliable means for estimating the 
sinkage and slippage of the rover wheels. Means 
for detection and avoiding geometric hazards are 
described el~ewhere.~ 
The Pathfinder rover is a six-wheeled 
'rocker-bogie' articulated vehicle. It will be 
functionally equivalent and the same size as our 
research vehicle 'Rocky 3.2', shown in Figure 1. 

Figure 1. Rocky 3.2 vehicle 
with laser stripe sensors 

Rocky 3.2 (one of a long line of Rockys) has 
sensors for wheel speed (all wheels are driven) 
and for determining the articulation angles of 
the chassis. (The articulations are passive so 
that each wheel follows the terrain contours 
independently.) It also has a look-ahead ranging 
sensor based on detecting, in a CCD image, the 
position of laser stripes projected ahead of the 
vehicle (Figure 1 is reproduced from a color 
original with a blue filter so the red laser 
stripes show as dark lines). Because the 
computation on-board the rover is very limited 
(an 8085 CPU, about 20 times less powerful than 
a typical personal computer), it is important 
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that only a small amount of sensor data be taken

and processed. Thus it is important to

formulate simple algorithms for estimation of

slippage and sinkage, and to do performance

evaluation based on the concept that only the
wheel, chassis, and a minimum number of

discrete measurements from the look-ahead

sensor can be used as input to the system. If a

simple algorithm gives good performance, in

terms of improvement of dead reckoning vs

basic odometry and in detection of hazardous

sinkage conditions, then the increased

computational load will be justified.

The Sinkage and Slippage Model

We consider a planar model as shown in Figure 2.

Specifically, there are three wheels connected

with passive but instrumented linkages so that

they remain in contact with the soil as they roll.

By processing the pitch and articulation sensor

values we can compute the difference in
elevation between the rear wheel and the center

or front wheels (call these z(1)and z(2),

respectively). We also have a look-ahead

ranging sensor which examines a number of

discrete points on the ground ahead of the

vehicle. Again, by processing the sensor data,

we can compute the elevation difference

between the rear-wheel nominal contact point

and the elevation of each sensed point on the

ground ahead of the vehicle (call these z(3)...

z(N)). Needless to say, all these measurements

have noise which must be accounted for in the

analysis.

Assumptions

We assume that undisturbed terrain in this

planar model has an elevation function y(x),

where y is the elevation at a point x along the
horizontal axis. When the vehicle moves ahead,

the front wheel sinks in the soil by an amount

s(x), so that it rolls along in contact with the

function y(x)-s(x). We assume that the trailing

wheels do not further compress the soil (since

the wheel loading of this vehicle is roughly

uniform). Thus they also track y(x)-s(x). This is

a key assumption which, if not approximately

correct, will lead to a general failure of the

entire approach. If the wheels all turn at the

same rate (which is reasonable since they are

geared so low that in normal terrain they run

effectively at the no-load speed), then when the
wheel circumference has moved a distance w the

vehicle will advance some distance x in the

horizontal direction, usually less than w, due to

wheel slippage. This slippage will generally be

a function of the type and slope of the soil.

Y
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x=0 at each iteration

Figure 2. Planar model and symbol definitions

Ob!ective

The objective of this analysis is to estimate x

and s(x) given the "odometer" reading w, the

values of z(1)...z(N), and the associated

measurement noise v(1)...v(N). Intuitively this

should be possible, since if y(x) and s(x) were

known exactly up to the forward-most sensor (a

ranging sensor for y and the front wheel for s),

then for a given Aw, there would usually be a

unique Ax which would allow all the sensor

readings to match their predicted values. In
other words one would "slide" the rear and

center wheels along the curve y(x)-s(x) until the

observed elevation difference z(1) is matched

between x+Ax (the new position of the rear

wheel) and x+Ax+d(1) (the new position of the

center wheel), which would fix Ax. Then one

would use the measured elevation of the front

wheel to compute y-s at that point (thereby

extending our knowledge of s(x) forward by Ax.

Similarly, we would use the measured elevation

at the forwardmost range sensor to extend our

knowledge of y(x) by Ax. This process would

repeat so as to build an arbitrary sequence of

AX, s(x+d(2)), and y(x+d(N)) values. We would, of

course, assume a Yo(Xo) value as the starting

elevation and position of the rear wheel.

(Knowledge of the initial y(x) and s(x) functions

between x and x + d(N) is trivial since the

vehicle will disembark from the lander along a

ramp of known geometry and with negligible slip

and sinkage.)
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One potential problem with this approach is that

values of z(1)...z(N) will not be taken densely

along the vehicle trajectory. Actually, the

processor on the vehicle is sufficiently slow and
burdened with other activities that the

navigation and mobility sensors are only

monitored roughly every wheel radius of

forward traverse. This is often enough to ensure

that rocks, craters and other geometric hazards

can be detected and avoided (an issue not

addressed in this paper).

There are several issues which need to be

considered with this model. First, if

Z(k)=col(z(N) ..... z(1)) at cycle k is measured on

terrain which is very flat (compared to the

measurement uncertainties V(k)) then we would
still like to have a reasonable estimate of

forward travel. This suggests that we should

have a prior model of the distribution of the slip

x(w), and that we should form a Maximum A

Posteriori (MAP) estimate of the slip. 5

Following our heuristic argument above, if we

were to "slide" the vehicle along until the

observed elevation difference z(i) is matched,

this corresponds to generating a discrete set of

values y(i), i=0 .... M1 and s(i), i=1 .... M2 which can

be thought of as our best estimate "histograms"

(i.e., discretized piecewise constant

representations) of the y(x) and s(x) functions.

The horizontal density of these estimates should

be sufficiently great to allow accurate models

of the terrain for purposes of simulation, but

not so great as to unduly burden the processor.

Since the wheels mechanically average the

terrain over a length equal to the tire contact

patch (about a third of a wheel radius) we would
tend to discretize the model at about this level.

Thus we might have M2=30 or so and M1=60 or so

(the actual Rocky 3.2 vehicle has 13 cm dia.

wheels and an overall length of 60 cm, with the

look-ahead sensor reaching about one vehicle

length).

Thus we can now outline a procedure for

estimating the sinkage and slippage of the

microrover:

1) Measure the elevation differences z(1)...z(N).

2) Use previously-estimated (described below)

histograms y(i), i=0 ..... M1 and s(i), i=0 ..... M2, as

well as a Gaussian prior distribution for Ax with

mean m x and variance Cx2 to compute the

(nonlinear) MAP estimate for t_x. We assume the

distribution for measurement noise for each z(i)

is also independent and Gaussian. Since the MAP

estimate of independent Gaussians is a weighted

least-squares estimate, we compute:

min i (j=3 _,N'I [(1/_z(j)2)(z(j ) - y(d(j)+i) -

y(i)+s(i)) 2] + (1/(_z(1)2)(z(1) - y(d(1)+i) +

s(d(1)+i) - y(i) + s(i)) 2 + (1/(_x2)(i-mx) 2)

The interpretation of this expression is as

follows: to maximize the posterior probability,

which is the product of exponentials, we need to

minimize the magnitude of the exponent. If we

let i be the histogram bin which we assume the

rear wheel has advanced to (and changed to an

elevation y(i)-s(i)), then the summation from

j=3 to N-1 is of squared errors between the

ranging sensor elevations and the corresponding

y values in the histogram. The next term is the

weighted squared error for the middle wheel,

incorporating the histogram data for s(1) as

well as y(1). The last term is from the Bayesian

prior distribution. Note that z(2) does not even

appear in this expression, as the advance of the
front wheel involves an unknown amount of

sinkage in the soil and so there is no histogram

data with which to compare. A similar situation

arises with z(N) in the summation, since y(x) is

unknown ahead of the forwardmost sensed point.

We implicitly assume that the forward advance

is not so great as to push the next sensed point

z(N-1) off the end of the histogram, although

this could be accounted for if necessary. We

would then perform a parabolic interpolation of

the weighted-sum-of-squares to get a refined

estimate of Ax to a fraction of a histogram bin.

While not strictly valid, interpolation of the

error function should be better than taking

integer bins, while not as computationally

intensive as the more conceptually-correct

approach of computing the minimal error

function on interpolated data. Note also that we

could compute m x as a function of the data here

prior to finding the minimum over i to account

for the fact that our expected slip is a function

of average terrain slope. For example, we could

compute

(j=1_ ',N(z(j)Id(j)))/N
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as an estimateof the slopeand computesome
linear or non-linear function of this to compute

m x. We could also modify the estimates of m x

and (_x2 using prior estimates to adapt and refine

our Bayesian prior.

3) Now that we have an estimate for Ax, we

translate the histograms for y and s forward by

Ax and up by y(Ax). This requires interpolation,

due to the non-integer nature of Ax, so we

assume that linear interpolation between

adjacent points is adequate (again to reduce

computational complexity). We extend our

knowledge of y forward by linear interpolation

from the translated old y(N) value to the

observed z(N) at d(N). Similarly, we extend our

knowledge of s forward using linear

interpolation from the translated s(d(2)) to a

new forwardmost value s(d(2))=y(d(2))-z(2).

histogram for y has been refined with multiple

measurements while the histogram for s has

been generated only by piecewise linear

interpolation out to the single measurement at

z(2) (i.e. the front wheel).

5) Lastly, move the vehicle forward and repeat

the cycle.

This model and analysis are very simple and

somewhat suspect from a theoretical

point-of-view. However, as in many practical

applications, real-time performance and

computational complexity are of paramount

importance, with the alternative being not to do
any estimation at all. Thus we would like to

know what the performance of this simple

estimation procedure is, and to what degree it

gives improvement over use of the prior mean

mx to estimate over-the-ground distance

travelled and not estimating sinkage at all (and

4) We need some way to incorporate the new accepting the risk of getting stuck). We would

measurements into the histogram for y also like the evaluate the usefulness of having

(otherwise only the forwardmost measurement more ranging sensor measurements as opposed
y(N) will play a role in defining the function, to fewer, since each additional measurement has

which seems to waste a great deal of valuable cost and may only be needed for this purpose (as

information). Note that between the old d(N) and rocks and craters may be detectable with as few

the new d(N) we have a linear approximation to as two look-ahead range points). If possible, we

y(x). When the vehicle moves forward by Ax

(generally less than d(N)-d(N-1)), we will get a

new value for y from z(N-1) which will, in

general, not lie on the previous linear

approximation to y. Since we expect that our

measurement noise _z(N-1) will be quite small

compared to the grossness of the linear

interpolation, we would like to force the

histogram to conform to the data at this point

(the new d(N-1) point). We would also expect

y(x) to be a continuous function, so that nearby

points should also be modified. For simplicity,

we will assume that adjacent histogram bins

will be updated by "splitting the difference", i.e.

they will be reassigned values halfway between

the new measurements of y based on each of the

z(i) measurements for i<N and the old (but

translated) histogram value. This is an ad-hoc

assumption made in the interests of

computational simplicity which will hopefully

allow a fairly accurate estimate of y(x) to be

generated as all of the sensors sweep over the

surface. We can perform a corresponding

process for s(x) by assuming that deviations

between z(1) and y(d(1))-s(d(1)) are due to

errors in the measurement of s and not y, which

makes some sense because by this time the

would like to also have a way of choosing the
distances d(3)...d(N).

Thus what remains to be done is 1) perform an

evaluation of the performance of the system by

estimating the variance in the slippage and

sinkage estimates by Monte Carlo numerical

simulation (since the nonlinear MAP formulation

is intrinsically iterative and because we want

to explicitly incorporate the effects of

quantization into the histogram bins, the effects

of resampling and interpolation, etc.). This
simulation will evaluate the effects when the

data are not drawn from a Gaussian distribution,

such as a uniform distribution of equal or

different mean. Lastly, we would like to

evaluate the effect on performance of varying

the number of sensed values N, of modifying the

mean m x of the prior slip distribution based on

experience, and of changes in the sensor noise

(_z(i), which we might adjust in an ad-hoc way to

account for the aliasing which the point-range

measurements will have in estimating the
average elevation over the histogram bins,

where the spectrum of y(x) might grossly

violate the Nyquist sampling theorem when
binned in this manner.
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The assumed model for y(x) in the simulation

needs to be chosen with some care. A scale-

invariant (fractai) model is attractive, but we

need to recognize that the hazard-detection and

avoidance system will effectively clip the
distribution of terrain features at some

particular scale. Similarly, a model for s(x)

needs to be formulated, which will be slowly

varying and of low amplitude. It would be good

to assess the performance of the system when

the slippage and sinkage are correlated, as one

would intuitively expect, even though the model

does not incorporate that effect (although it

easily could). Another interesting correlation

which would be good to model in the simulation

is the fact that the mechanical linkages in the
vehicle chassis cause the noise in the

measurements z(i) to be highly correlated (since

wheel pairs are at opposite ends of links), even

though they may be Gaussian (from digitizing

analog potentiometer values or peak detection in

analog CCD scan lines).

The simulation model for y(x) and s(x)

As mentioned above, we desire to test the

sinkage and slippage estimation algorithm on

terrain which is "scale invariant". Specifically,

we wish to create a sample random terrain in

the form of a histogram (i.e. sequence) at the

same resolution as that maintained by the

estimation algorithm. This is accomplished by

uniformly sampling a linear combination of sine

waves, whose amplitude is random over a

uniform range extending from zero to some fixed

multiple of the wavelength (thereby ensuring

scale invariance), and whose phase is random

over [0,2=]. Twenty different wavelengths are

combined over the range from 1 cm to 1.9

meters, with each one 30% longer than the

previous one. This range encompasses all scales

of interest: smaller scales average to zero over

the bins and longer scales are virtually flat over
the length of the vehicle and its look-ahead

ranging sensor. (Note that the smaller scales

will exhibit substantial aliasing when binned,
which is an important and real effect that needs

to be modelled by the analysis.) As mentioned
before, a "smooth" simulated terrain is realistic

here, since the geometric hazard detection

system will avoid rough or discontinuous
terrain.

The terrain we construct here is characterized

by a single parameter: the maximum slope of

each sine wave component. We call this

parameter the "roughness" of the terrain. Both

y(x) and s(x) are created by this technique, but

s(x) is clipped at zero so that only positive

values of sinkage are allowed. The "estimated"

histograms of y and s are initialized with the

"actual" values from this simulation; from that

point on the estimation procedure extends them.

This is reasonable since, as mentioned above,
the first meter or so of traverse will be on the

lander exit ramp and therefore known. We

arbitrarily set the roughness of the sinkage

function s(x) to be 20% that of y(x), based on the

philosophy that the terrain mechanical

characteristics are more slowly-varying than

the surface topography.

It is perhaps worth mentioning that the approach

of combining sine waves over a large number of

different scales is computationally intensive,

but need only be done once to simulate a large

number of different terrain types, since to

change the "roughness" only requires rescaling
the vertical coordinate of a "standard" terrain,

i.e. with unity roughness. Another approach to

generating scale-invariant terrain, the use of

Gauss-Markov random sequences, needs to be

fairly high-order to get the needed range of

scales and thus becomes extremely complex to

analyze.

Specifics parameters for initializing the model

are drawn from the actual design of the Rocky

3.2 microrover. Thus, for example, the distances

from the sensed points to the rear wheel contact

point are 25, 50, 60, and 80 cm for the middle

wheel, front wheel, downlooking range sensor,

and outlooking range sensor, respectively. The
sensor noise (standard deviations) associated

with these elevation differences are 0.04 mm

for the wheel sensors, and 2 mm for the

look-ahead sensors. We normally expect the

vehicle to advance about 5 cm in each sensing

cycle.

Simulation Trials

For each trial run, we evaluate the odometry

error and sinkage error as a function of bin size

and terrain roughness for different input

assumptions. We evaluate bin sizes from 0.2 cm

to 8 cm, which spans the range from very fine to

very coarse compared the the expected forward
advance per cycle. We evaluate terrain

roughness ranging from a maximum slope at each

scale of 0.25% to 8%, which spans terrain from
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very smooth (with typical elevation differences

of 2 mm over the length of the vehicle) to very

rough (with 8 cm typical elevation differences

over the length of the vehicle, about the limit

which the hazard avoidance system would

permit). The simulation covers 62.5 meters of

simulated terrain (25,000 bins at the finest bin

size), which is created once and then resampled
for the different simulations so that the effects

of aliasing can be evaluated on identical terrain.

One important issue not addressed in the

previous description of the algorithm is the

choice of the search range for the

weighted-sum-of- squares (WSS). Initially, the

search was extended to 4c + 4 bins beyond the

Bayesian prior mean. However, it was found that

the simulation would occasionally get "stuck"

and fail to advance the rover by the proper

amount for several cycles, whereupon the

simulation lost track of the terrain (i.e.

presumably the internal histogram for y(x) had

no relation to the actual y(x)). This was caused

by the global minima of the WSS function not

corresponding to the actual forward advance. A

simple fix for this problem was to compute the

secondary minima, and if it was beyond the

global minima and nearly as good (within a

factor of 3), then the search range on the next

cycle was extended to include that minima. Note

that, in all cases, the global minima is chosen

for the simulation, and only that the search

range is extended if another minima shows

promise, so that it can be selected as the global

minima on the next cycle. This effectively cured

the problem, and subsequently the simulation
was not observed to lose track of terrain.

Since we expect the look-ahead ranging sensor

to have much worse measurement accuracy than
the chassis articulation sensors, we will

characterize the slippage estimation with the

articulation-based elevation sensing noise,

while the sinkage is based on the look-ahead
sensor noise.

Thus we represent the results of this analysis

by plotting the sinkage or slippage error against

the terrain roughness value. Typically we would

expect to have little or no cumulative error

when the terrain is very rough, and if the terrain

is smooth the algorithm will just return the

Bayesian prior mean value as the result, so the

error that accumulates is just the difference

between the Bayesian prior mean and the actual

mean value. Thus for slippage, for example, if

the Bayesian prior is in error by 20% (that is,

the actual expected distance advanced per

sensing cycle is different from the Bayesian

prior mean by 20%), then we would expect the

algorithm to smoothly transition from small

error to 20% error in estimating traverse
distance as the roughness is increased from zero

to a large value. We wish to establish the

nature of this curve for both slippage and

sinkage. Furthermore, to reduce computational
complexity, we wish to determine how coarse

the histogram bin size can be without excessive

degradation of these results.

Table 1 shows the program output for the first

test case, where the Bayesian prior

overestimates the forward advance by 20%.

Each entry in the table is the percentage

odometry error over the 62.5 meter course,

followed by the RMS sinkage error in parenthesis

(in cm). Note that, indeed, the odometry error
more-or-less smoothly falls from 20% for

smooth terrain to near zero for rougher terrain.

Furthermore, note that the performance

improves as the bins get larger up to a point, and

then declines for larger bin sizes, especially on

rough terrain.

The two effects which seem to be occurring are

severe aliasing for large bins (when the bins are

larger than the advance of the vehicle), and poor

terrain modelling for small bins. The former

effect is compounded by the fact that we cannot

fit a parabola to the WSS function if the minima

is at zero bins of advance, since we do not

compute the function for negative advance and

so cannot bound the integral minima with values

on each side, as needed for a parabolic

interpolation. In this case we merely set the

forward advance estimate to exactly zero. For

large bins (e.g. 8 cm when the expected forward

advance is 5 cm) this occurs commonly, and is

only sometimes compensated for in later cycles.

This produces a strong tendency to
underestimate the distance travelled.

For very small bins, on the other hand, the

algorithm we have selected for modelling the

sparsely-sampled terrain is inadequate.

Remember that we incorporate new z[i]

measurements into the histogram by forcing the

value at bin i to be consistent, and then "split

the difference" on the i-1 and i+1 bins. When the

bins are very fine this will produce narrow
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SLIPPAGE ERROR AS A FUNCTION OF ROUGHNESS AND BIN SIZE

(each entry percent odometry error, RMS sinkage error (cm))

bin roughness -- max slope at each scale

(cm) 0.0025 0.0050 0.0100 0.0200 0.0400 0.0800

0.25 20.87 (0.2) 15.24 (0.3) 10.36 (0.6) 6.62 (0.9) 3 57 (1.5) -0.83 (6.3)

0.50 20.58 (0 2) 15.73 (0.3)

0.75 18.94 (0

1.00 20.98 (0

1.25 21 56 (0

1.50 19 30 (0

1.75 18 16 (0

2.00 18 74 (0

2.25 16 30 (0

2.50 17 52 (0

2.75 16 29 (0

2) 13.57 (0.3)

2) 14.37 (0.3)

2) 15.63 (0.3)

2) 11.15 (0.3)

2) 9.8O (0.3)

2) 11.66 (0.2)

2) 11.07 (0.2)

2) 11.44 (0.2)

2) 11.02 (0.2)

3.00 12 97 (0.2) 7.60 (0.3)

3.25 15 20 (0.2) 8.33 (0.2)

3.50 15 98 (0.i) 10.44 (0.2)

3.75 14 47 (0.2) 7.45 (0.2)

4.00 14.82 (0.i) 8.97 (0.2)

9.02 (0.5) 5.16 (0.8)

7.86 (0.7) 3.69 (0.8)

8.45 (0.4) 3.94 (0.7)

7.33 (0.4) 2.91 (0.6)

5.56 (0.4) 1.42 (0 6)

3.78 (0.4) 0.35 (0

5.51 (0.4) 1.39 (0

5.10 (0.3) 1.32 (0

6.75 (0.4) 3.79 (0

6.09 (0.3) 2 29 (0

1.97 (0.4) -2 03 (0

1.01 (0.3) -3 58 (0

5.64 (0.3) 1 14 (0

0.41 (0.3) -5 57 (0

2.74 (0.3) -2 24 (0

2

1

1

2

0

5) -14

4) -0

5) -0

6) 1.67 (1.2) 1

6) -2.21 (2.0) 2

6) -4.16 (I.I) -3

6) -7.01 (i 4) -4

5) -0.88 (i 2) 0

6) -8.25 (I 5) -4

6) -4.85 (i 3) -3

58 (1.4) -1.20 (4.5)

84 (1.4) -0.46 (3.4)

99 (1.2) 2.27 (2.8)

05 (1.3) -2.17 (4.6)

I0 (I.0) -0.63 (2.9)

61 (6.2) -1.07 (2 6)

32 (i.0) -i 04 (2 9)

01 (0.9), -0 04 (2 2)

9)

4)

0)

5)

3)

6)

5)

4.25 12.83 (0.2)

4.50 15.14 (0.2)

4.75 14.61 (0.2)

5.00 15.04 (0.2)

5.25 12.31 (0.2)

5.50 12.66 (0.2)

5 75 14.54 (0.2)

6 00 16.26 (0.2) 9

6 25 14.44 (0.2) i0

6 50 10.56 (0.2 -2

6 75 11.23 (0.2 -2

7 00 11.60 (0.2 0

7 25 14.54 (0.2 1

7 50 15.21 (0.2 3

7 75 13.48 (0.2 4

8 00 17.31 (0.2) 6

4.81 (0 2) -5.49 (0.4)-12

7.66 (0

8.82 (0

9.75 (0

3.32 (0 2) -7

6 01 (0 3) -4

6 20 (0 2) -3 20 (0

72 (0 2) 1 25 (0

00 (0 3) 1 46 (0

75 (0 2)-18 84 (0
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52 (0.3)-13.74 (0 4)-24.38 (0.7)-25

79 (0.2)-12.49 (0.4)-21.23 (0.8)-17

67 (2

01 (3

48 (3

99 (3

63 (3

91 (3

43 (3

58 (0.8)-14.81 (i 9)-14 12 (4 0)

2) -0.33 (0.3) -8 00 (0.7) -8.91 (I 7) -7 28 (4 0)

2) 1.41 (0.3) -5 23 (0.6) -9.01 (I 4) -8 88 (3 2)

3) 4 66 (0.4) -0.94 (0.8) -2.37 (i 8) 1 74 (4 8)

19 (0.4)-15.85 (0.8)-18.43 (1.8)-13.87 (4.6)

00 (0 4)-12.23 (0.8)-15.58 (1.6)-14.52 (3.5)

3)-13.75 (0.7)-15.86 (1.6)-13.18 (3.5)

3) -6.40 (0.8) -8.48 (1.7) -4.22 (4.1)

4) -4.67 (0.9) -5.12 (1.8) -0.16 (4.7)

5)-27.70 (1.1)-29 74 (2.4)-51.35 (5.8)

4)-29.11 (0.8)-28 83 (1.7)-54.61 (3.5)

4)-25.05 (0.8)-26 24 (1.6)-23.42 (3.8)

5)-25.49 (1.1)-28 44 (2.6)-27.28 (5.8)

50 (2.7)-22.45 (5.3)

00 (1.8)-30.19 (4.1)

86 (1.8)-15.76 (4.7)

Simulation Parameters

Actual mean advance per cycle: 5.0 cm, Sigma: 1.00 cm

Bayesian prior mean advance per cycle: 6.0 cm, Sigma: 0.05 cm

Unit-Roughness Terrain RMS Amplitude i.ii meters over 62.5 meters

Statistical Attributes of Unit-Roughness Simulated Terrain by Bin Size

(each entry RMS bin-to-bin elevation change (cm),

RMS error in Din-to-Din linear projection (cm))

Bin

Size (cm)

X X.00 X.25

0.-- 0.00 0.00 2.40 1.29

I.-- 8.30 7.47 9.90 7.85

2.-- 14.81 9.40 16.50 10.14

3.-- 21.52 12.51 23.16 13.81

4.-- 27.87 16.84 29.73 18.87

5.-- 34.70 24.27 36.33 26.42

6.-- 41.24 32.49 42.69 33.57

7.-- 47.24 39.24 48.90 41.42

X.50

4.62 4 07

11.50 8 12

18.18 i0 82

24.77 14 78

31.38 20 58

38.02 28 56

44.22 35.31

50.43 43.60

X.75

6.58 6.38

13.14 8.74

19.86 11.50

26.40 15.74

33.06 22.26

39.60 30.45

45.69 37.22

51.91 45.52

Table 1

"spikes" in the histograms, and not at all

correspond to realistic terrain. The proper fix
for this would be to =remember" when and where

each prior measurement was taken, and try to

perform a statistically-valid terrain

reconstruction (based on some assumed terrain

Fourier spectrum), incorporating all prior
measurements and their uncertainties. However,

this would be computationally demanding, and

the procedure we have adopted seems to work

quite well for intermediate-sized bins, about 2

cm long.

Note that the sinkage estimates in Table 1 are

all about the same for a given roughness, and

increase more-or-less proportionally to

roughness. This is intuitively pleasing, since

the high accuracy of the wheel sensors compared



to the look-ahead sensors makes the estimate of

the forward advance of the vehicle (i.e. the

minima of the WSS function) almost entirely a
function of the wheel sensors. Thus, the

primary function being estimated accurately is

the Ioadbearing surface y(x)-s(x), with both y
and s being much more uncertain than their

difference. Then sinkage is estimated using the

look-ahead sensor(s), with their large attendent

noise. This suggests that a more appropriate
implimentation for the actual vehicle is to use

the wheel sensors alone to estimate travel along

the Ioadbearing surface, and to use only one

look-ahead sensed value to estimate sinkage.
Thus it is irrelevant to examine the case of

additional look-ahead sensing values so long as

their noise is very large compared to the chassis

articulation sensing. The "roughness" scale used

corresponds approximately to the RMS elevation
differences in meters over the scale of the

vehicle, i.e. a roughness of 0.08 gives 8 cm of

typical elevation difference across the vehicle.

At the bottom of Table 1 is a chart showing

some of the statistical properties of the

unit-roughness simulated terrain: the RMS

bin-to-bin elevation change and the RMS error in

a bin-to-bin linear projection to the next bin,

each as a function of bin size. This table has cm

of bin size along the left, with fractions of a cm

along the top. Note that the values for zero bin

size, which in fact don't exist, are set to zero

for printing purposes.

There is one striking fact represented in Table
1: we have selected the standard deviation of

the Bayesian prior to be 0.05 cm (1% of the

actual advance), when the sigma of the actual

vehicle advance per cycle is 1 cm. This

artificially "overweights" the Bayesian prior to
show the smooth transition from 20% error to

small error as the terrain gets rougher.
However, the chassis articulation sensors are so

accurate (_=0.04 mm) that we can do much

better than this. Figure 3 shows the results for

different values of the Bayesian prior (1% and

10% of the actual). As one can see, with lower

confidence in the prior, even on smooth terrain,

the results are very good for bin sizes of about 2

cm (ranging from 5% error on very smooth or

rough terrain to under 1% error on moderate

terrain). This, again, is to be expected, since

even the smooth terrain has large excursions

compared to the sensor noise. If we reduce the

prior variance further, however, the estimator

performance degrades rapidly. This presumably

Percent

Odometry
Error

occurs because much more error exists in the

terrain histogram reconstruction than would be

apparent from the sensor noise alone. Thus, if

the simulation is not "driven" strongly by the

Bayesian prior, it is "free" to choose any match

to the sensor data, weighted artificially heavily

due to the low sensor noise. Thus, even though
the sensors are good, the terrain estimates

which result from our sparse sampling and crude

interpolation are not nearly so good. Thus

weighting the perceived errors from this

function by one over the sensor variance is

unrealistic; we compensate by making the

Bayesian prior very tight. Thus there is no

particular value to be gained in evaluating
somewhat different levels of sensor noise.

4 _sian Prior o=1%

Bayesian Prior \

1_

I I I 7 I
.25 .50 1.0 2.0 4.0

Roughness of Scale-lnvariant Terrain (RPlS cm)

Figure 3. Odometry error as a function of

terrain roughness (20% actual slip)

Numerous additional runs analogous to Table 1

were performed using different simulated

terrain (using different seeds for the random

number generator), and the results were

virtually identical. Note that there are
occasional anomalies where the performance is

poor (such as in Table 1 at roughness 0.04 and

bin size 1.75 cm). These anomalies presumably

result when the terrain and binning processes

conspire to give ambiguous terrain for matching

purposes. This is to be expected, but so long as

it is rare and does not give worse estimates

than doing nothing (i.e. using just the prior mean

estimate), then no harm is done. This is another

reason to overweight the prior distribution.
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Additional runs explored several issues. For Since squaring can also be accomplished as a

example, when the prior distribution table look-up, the computation is of the order of

underestimates the forward advance, the 1 add and 2 table look-ups per bin, with

performance is generally good for bin sizes typically 5 bins searched. Finding the global and

between 2 and 3 cm, but that very bad secondary minima requires roughly 2
performance is not uncommon. Another issue comparisons per bin. Maintenance of the

considered was the estimation performance
when the actual forward advance is not

Gaussian. Once again, the performance was

excellent. Lastly, we considered the system

performance when the actual slip is a function

of sinkage and slope, as one would expect. The
results were evaluated for the case when the

mean of the actual advance per cycle drops

linearly with increasing sinkage and/or slope,

(and continuing with the non-Gaussian uniform

actual distribution). Since the very rough

terrain will probably have slopes and sinkages

which would literally stop the vehicle under

such an assumption, we clipped the left end of

the uniform distribution at zero advance per

cycle, so that the simulation doesn't get in an

infinite loop (as would the actual vehicle). Here
we have assumed that the linear coefficients

are such that a 60% grade will stop the vehicle,

as would sinkage of 5 cm. The performance on

smooth terrain was poor, as the Bayesian prior

of 6 cm/cycle was much larger than the actual

average, which is 5 at best and 1 at worst,

depending on terrain conditions. However, as

soon as the roughness increases to 1 cm or so

over the length of the vehicle, the odometry

performance improves to within 10% and at 2-4

cm roughness. Only a few percent of odometry
error is observed for bin sizes between 2 and 3

cm. This performance is very encouraging

considering the simplicity of the model and the

gross deviations which "reality" makes with the

assumptions underlying the model.

ComDutational Reauirements

As described above, the optimal bin size is in

the neigborhood of 2.5 cm, which means that

there are only 20 bins of data over the length of
the vehicle to be accumulated and maintained, so

the compuation and storage requirements are

small. Good performance can be anticipated
with only 2 terms in the WSS function-- one for

the Bayesian prior (which can be precomputed

and stored in a table) and one for the center

wheel, since the look-ahead sensor is so noisy
as not to affect the forward-advance estimate.

(The front wheel moves onto unknown terrain,

histogram requires a relatively few operations

also, since the histogram data can be in a ring

buffer with a pointer, to avoid actually shifting

the data in an array. Thus only the linear

interpolation and "split the difference"

operations are needed, which are simple. This

implies that, with of the order of 100

operations per cycle, the odometry estimates of

the vehicle can be markedly improved, and

sinkage estimates provided.

Preliminary_ Test Results

The algorithm described above has been

implemented on Rocky 3.2 and, as of this
writing, a few test runs have been conducted.

The preliminary indication is that the

articulation sensor noise is substantially larger

than anticipated, leading to odometry results

which are somewhat degraded compared to the

simulations. However, it appears that, even

with the noisy data, the algorithm will give a

very reasonable hazard alarm for sinkage and
slippage. (In this case, we set the confidence in

the Bayesian prior to be very high, and then

threshold the WSS function to trigger a slip

alarm.) Work is continuing on reducing the noise

in the analog-to-digital portion of the system.

Extensive tests for this system are planned for
1994.

Conclusions

The MAP estimation procedure developed here,

based on a simple weighted-sum-of-squares

computation, seems to give sinkage and slippage

estimates which will allow planetary

microrovers to detect and avoid a wide range of

non-geometric hazards. Simulations suggest

that it may also improve odometry markedly

over simple wheel revolution counting, and

thereby lead to a significant improvement in

dead-reckoning accuracy for this class of
vehicle.
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