5 research outputs found

    Herbivore absence can shift dry heath tundra from carbon source to sink during peak growing season

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Min, E., Wilcots, M. E., Naeem, S., Gough, L., McLaren, J. R., Rowe, R. J., Rastetter, E. B., Boelman, N. T., & Griffin, K. L. Herbivore absence can shift dry heath tundra from carbon source to sink during peak growing season. Environmental Research Letters, 16(2), (2021): 024027, https://doi.org/10.1088/1748-9326/abd3d0.In arctic tundra, large and small mammalian herbivores have substantial impacts on the vegetation community and consequently can affect the magnitude of carbon cycling. However, herbivores are often absent from modern carbon cycle models, partly because relatively few field studies focus on herbivore impacts on carbon cycling. Our objectives were to quantify the impact of 21 years of large herbivore and large and small herbivore exclusion on carbon cycling during peak growing season in a dry heath tundra community. When herbivores were excluded, we observed a significantly greater leaf area index as well as greater vascular plant abundance. While we did not observe significant differences in deciduous dwarf shrub abundance across treatments, evergreen dwarf shrub abundance was greater where large and small herbivores were excluded. Both foliose and fruticose lichen abundance were higher in the large herbivore, but not the small and large herbivore exclosures. Net ecosystem exchange (NEE) likewise indicated the highest carbon uptake in the exclosure treatments and lowest uptake in the control (CT), suggesting that herbivory decreased the capacity of dry heath tundra to take up carbon. Moreover, our calculated NEE for average light and temperature conditions for July 2017, when our measurements were taken, indicated that the tundra was a carbon source in CT, but was a carbon sink in both exclosure treatments, indicating removal of grazing pressure can change the carbon balance of dry heath tundra. Collectively, these findings suggest that herbivore absence can lead to changes in plant community structure of dry heath tundra that in turn can increase its capacity to take up carbon.The authors would like to thank Jess Steketee, Austin Roy, Matthew Suchocki, Ruby An, Cody Lane and the Arctic LTER (NSF Grant No. 1637459) for maintaining the long-term herbivore exclosure experiment. This work was supported by funding from the NSF (Grant Nos. OPP-1603677 to J R M, OPP-1603760 to L G, OPP-1603654 to R J R, OPP-1603560 to E R, OPP-1603777 to N B and K L G). We also acknowledge financial support for Megan Wilcots from the Department of Ecology, Evolution, and Environmental Biology at Columbia University

    Little Things

    Get PDF
    We present LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The HI Nearby Galaxy Survey) that is aimed at determining what drives star formation in dwarf galaxies. This is a multi-wavelength survey of 37 Dwarf Irregular and 4 Blue Compact Dwarf galaxies that is centered around HI-line data obtained with the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA). The HI-line data are characterized by high sensitivity (less than 1.1 mJy/beam per channel), high spectral resolution (less than or equal to 2.6 km/s), and high angular resolution (~6 arcseconds. The LITTLE THINGS sample contains dwarf galaxies that are relatively nearby (less than or equal to 10.3 Mpc; 6 arcseconds is less than or equal to 300 pc), that were known to contain atomic hydrogen, the fuel for star formation, and that cover a large range in dwarf galactic properties. We describe our VLA data acquisition, calibration, and mapping procedures, as well as HI map characteristics, and show channel maps, moment maps, velocity-flux profiles, and surface gas density profiles. In addition to the HI data we have GALEX UV and ground-based UBV and Halpha images for most of the galaxies, and JHK images for some. Spitzer mid-IR images are available for many of the galaxies as well. These data sets are available on-line.Comment: In press in A

    Location of studies and evidence of effects of herbivory on Arctic vegetation: a systematic map

    Get PDF
    Herbivores modify the structure and function of tundra ecosystems. Understanding their impacts is necessary to assess the responses of these ecosystems to ongoing environmental changes. However, the effects of herbivores on plants and ecosystem structure and function vary across the Arctic. Strong spatial variation in herbivore effects implies that the results of individual studies on herbivory depend on local conditions, i.e., their ecological context. An important first step in assessing whether generalizable conclusions can be produced is to identify the existing studies and assess how well they cover the underlying environmental conditions across the Arctic. This systematic map aims to identify the ecological contexts in which herbivore impacts on vegetation have been studied in the Arctic. Specifically, the primary question of the systematic map was: “What evidence exists on the effects of herbivores on Arctic vegetation?”
    corecore