8 research outputs found

    Cytokine signature of inflammation mediated by autoreactive Th-cells, in calf muscle of claudicating patients with Fontaine stage II peripheral artery disease

    Get PDF
    Peripheral artery disease (PAD), a severe atherosclerotic condition primarily of the elderly, afflicts 200 million individuals, worldwide, and is associated with lower extremity myopathy. Circulating markers of inflammation have been linked to risk and severity of PAD but the contribution of local inflammation to myopathy remains unknown. We evaluated, by ELISA, calf muscle of PAD patients (N = 23) and control subjects (N = 18) for local expression of inflammatory cytokines including Granulocyte/Monocyte Colony-Stimulating Factor (GM-CSF), Interleukin 17A (IL-17A), Interferon ϒ (IFN-ϒ), tumor necrosis factor α (TNF-α), and Interleukin 6 (IL-6). One or more of these cytokines were expressed in nineteen patients and 2 controls and coordinated expression of GM-CSF, IL-17A, IFN-ϒ, and TNF-α, a signature of activated, MHC Class II dependent autoreactive Th-cells, was unique to 11 patients. GM-CSF is the central driver of tissue-damaging myeloid macrophages. Patients with this cytokine signature had a shorter (P= 0.017) Claudication Onset Distance (17 m) compared with patients lacking the signature (102 m). Transforming Growth Factor β1 (TGFβ1) and Chemokine Ligand 5 (CCL5) were expressed coordinately in all PAD and control muscles, independently of GM-CSF, IL-17A, IFN-ϒ, TNF-α, or IL-6. TGFβ1 and CCL5 and their gene transcripts were increased in PAD muscle, consistent with increased age-associated inflammation in these patients. Serum cytokines were not informative of muscle cytokine expression. We have identified a cytokine profile of autoimmune inflammation in calf muscles of a significant proportion of claudicating PAD patients, in association with decreased limb function, and a second independent profile consistent with increased “inflammaging” in all PAD patients

    Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study

    Get PDF
    Purpose Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom. Methods Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded. Results The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia. Conclusion We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes

    Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study

    Get PDF
    Purpose: Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom. Methods: Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded. Results: The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia. Conclusion: We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes

    CD11d integrin blockade reduces the systemic inflammatory response syndrome after traumatic brain injury in rats

    No full text
    Traumatic CNS injury triggers a systemic inflammatory response syndrome (SIRS), in which circulating inflammatory cells invade body organs causing local inflammation and tissue damage. We have shown that the SIRS caused by spinal cord injury is greatly reduced by acute intravenous treatment with an antibody against the CD11d subunit of the CD11d/CD18 integrin expressed by neutrophils and monocyte/macrophages, a treatment that reduces their efflux from the circulation. Traumatic brain injury (TBI) is a frequently occurring injury after motor vehicle accidents, sporting and military injuries, and falls. Our studies have shown that the anti-CD11d treatment diminishes brain inflammation and oxidative injury after moderate or mild TBI, improving neurological outcomes. Accordingly, we examined the impact of this treatment on the SIRS triggered by TBI. The anti-CD11d treatment was given at 2 h after a single moderate (2.5–3.0 atm) or 2 and 24 h after each of three consecutive mild (1.0–1.5 atm) fluid percussion TBIs. Sham-injured, saline-treated rats served as controls. At 24 h, 72 h, and 4 or 8 weeks after the single TBI and after the third of three TBIs, lungs of rats were examined histochemically, immunocytochemically and biochemically for downstream effects of SIRS including inflammation, tissue damage and expression of oxidative enzymes. Lung sections revealed that both the single moderate and repeated mild TBI caused alveolar disruption, thickening of inter-alveolar tissue, hemorrhage into the parenchyma and increased density of intra-and peri-alveolar macrophages. The anti-CD11d treatment decreased the intrapulmonary influx of neutrophils and the density of activated macrophages and the activity of myeloperoxidase after these TBIs. Moreover, Western blotting studies showed that the treatment decreased lung protein levels of oxidative enzymes gp91(phox), inducible nitric oxide synthase and cyclooxygenase-2, as well as the apoptotic pathway enzyme caspase-3 and levels of 4-hydroxynonenal-bound proteins (an indicator of lipid peroxidation). Decreased expression of the cytoprotective transcription factor Nrf2 reflected decreased lung oxidative stress. Anti-CD11d treatment also diminished the lung concentration of free radicals and tissue aldehydes. In conclusion, the substantial lung component of the SIRS after single or repeated TBIs is significantly decreased by a simple, minimally invasive and short-lasting anti-inflammatory treatment
    corecore