71 research outputs found

    Integrating climate change mitigation and adaptation in agriculture and forestry: opportunities and trade-offs

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.International audienceAlthough many activities can jointly contribute to the climate change strategies of adaptation and mitigation, climate policies have generally treated these strategies separately. In recent years, there has been a growing interest shown by practitioners in agriculture, forestry, and landscape management in the links between the two strategies. This review explores the opportunities and trade-offs when managing landscapes for both climate change mitigation and adaptation; different conceptua-lizations of the links between adaptation and mitigation are highlighted. Under a first conceptualization of 'joint outcomes,' several reviewed studies analyze how activities without climatic objectives deliver joint adaptation and mitigation outcomes. In a second conceptualization of 'unintended side effects,' the focus is on how activities aimed at only one climate objective—either adaptation or mitigation—can deliver outcomes for the other objective. A third conceptualization of 'joint objectives' highlights that associating both adaptation and mitigation objectives in a climate-related activity can influence its outcomes because of multiple possible interactions. The review reveals a diversity of reasons for mainstreaming adaptation and mitigation separately or jointly in landscape management. The three broad conceptualizations of the links between adaptation and mitigation suggest different implications for climate policy mainstreaming and integration

    Immune Amplification of Murine CD8+ Suppressor T Cells Induced via An Immune-Privileged Site: Quantifying Suppressor T Cells Functionally

    Get PDF
    BACKGROUND: CD8(+) suppressor T cells exert antigen-specific suppression of the expression of hypersensitivity by activated T cells. Therefore, CD8(+) suppressor T cells serve a major regulatory role for the control of active immunity. Accordingly, the number and/or activity of CD8(+) suppressor T cells should be influenced by an immune response to the antigen. To test this hypothesis we used an adoptive transfer assay that measures the suppression of the expression of delayed-type hypersensitivity (DTH) by CD8(+) suppressor T cells to quantify the antigen-specific suppression of DTH by these suppressor T cells. METHODS: Suppressor T cells were induced in the spleens of mice by the injection of antigen into the anterior chamber of an eye. Following this injection, the mice were immunized by the same antigen injected into the anterior chamber. Spleen cells recovered from these mice (AC-SPL cells) were titrated in an adoptive transfer assay to determine the number of AC-SPL cells required to effect a 50% reduction of antigen-induced swelling (Sw50) in the footpad of immunized mice challenged by antigen. RESULTS: Suppression of the expression of DTH is proportional to the number of AC-SPL cells injected into the site challenged by antigen. The number of AC-SPL cells required for a 50% reduction in DTH-induced swelling is reduced by injecting a cell population enriched for CD8(+) AC-SPL cells. Immunizing the mice receiving intracameral antigen to the same antigen decreases the RSw50 of AC-SPL cells required to inhibit the expression of DTH. CONCLUSIONS: The results provide the first quantitative demonstration that the numbers of antigen-specific splenic CD8(+) suppressor T cells are specifically amplified by antigen during an immune response

    Worldwide impacts of climate change on energy for heating and cooling

    Get PDF
    The energy sector is not only a major contributor to greenhouse gases, it is also vulnerable to climate change and will have to adapt to future climate conditions. The objective of this study is to analyze the impacts of changes in future temperatures on the heating and cooling services of buildings and the resulting energy and macro-economic effects at global and regional levels. For this purpose, the techno-economic TIAM-WORLD (TIMES Integrated Assessment Model) and the general equilibrium GEMINI-E3 (General Equilibrium Model of International-National Interactions between Economy, Energy and Environment) models are coupled with a climate model, PLASIM-ENTS (Planet-Simulator - Efficient Numerical Terrestrial Scheme). The key results are as follows. At the global level, the climate feedback induced by adaptation of the energy system to heating and cooling is found to be insignificant, partly because heating and cooling-induced changes compensate and partly because they represent a limited share of total final energy consumption. However, significant changes are observed at regional levels, more particularly in terms of addi- tional power capacity required to satisfy additional cooling services, resulting in increases in electricity prices. In terms of macro-economic impacts, welfare gains and losses are associated more with changes in energy exports and imports than with changes in energy consumption for heating and cooling. The rebound effect appears to be non-negligible. To conclude, the coupling of models of different nature was successful and showed that the energy and economic impacts of climate change on heating and cooling remain small at the global level, but changes in energy needs will be visible at more local scale

    CD25(+), interleukin-10-producing CD4(+) T cells are required for suppressor cell production and immune privilege in the anterior chamber of the eye

    No full text
    An important factor in the establishment of ocular immune privilege is the dynamic down regulation of T helper 1 (Th1) immune responses that occurs in response to antigens delivered intraocularly; a phenomenon that has been termed anterior chamber-associated immune deviation (ACAID). ACAID is characterized by the generation of splenic regulatory cells that inhibit the expression of delayed-type hypersensitivity. Previous studies have shown that antigens introduced into the anterior chamber of the eye induce the generation of a CD4(+) T-cell population that suppress the induction of Th1 immune responses and the appearance of a second population of CD8(+) T regulatory cells that suppresses the expression of Th1 inflammatory responses (= efferent suppressor cells). Experiments described here characterized the function of the CD4(+) ACAID suppressor cell population and its effect on the generation of CD8(+) efferent suppressor cells that inhibit the expression of DTH in situ. Both in vivo and in vitro experiments demonstrated that CD4(+) T cells are required for the generation of CD8(+) efferent suppressor cells. CD4(+) T cells do not require cell contact with CD8(+) T cells; instead they produce soluble IL-10 that is sufficient for the generation of ACAID suppressor cells. Finally, the CD4(+) afferent T suppressor cells are not natural killer T cells, but do express the CD25 cell surface marker
    • …
    corecore