44 research outputs found

    Identity-by-descent estimation with population- and pedigree-based imputation in admixed family data

    Get PDF
    Background: In the past few years, imputation approaches have been mainly used in population-based designs of genome-wide association studies, although both family- and population-based imputation methods have been proposed. With the recent surge of family-based designs, family-based imputation has become more important. Imputation methods for both designs are based on identity-by-descent (IBD) information. Apart from imputation, the use of IBD information is also common for several types of genetic analysis, including pedigree-based linkage analysis. Methods: We compared the performance of several family- and population-based imputation methods in large pedigrees provided by Genetic Analysis Workshop 19 (GAW19). We also evaluated the performance of a new IBD mapping approach that we propose, which combines IBD information from known pedigrees with information from unrelated individuals. Results: Different combinations of the imputation methods have varied imputation accuracies. Moreover, we showed gains from the use of both known pedigrees and unrelated individuals with our IBD mapping approach over the use of known pedigrees only. Conclusions: Our results represent accuracies of different combinations of imputation methods that may be useful for data sets similar to the GAW19 pedigree data. Our IBD mapping approach, which uses both known pedigree and unrelated individuals, performed better than classical linkage analysis

    Estimating relationships between phenotypes and subjects drawn from admixed families.

    Get PDF
    Background: Estimating relationships among subjects in a sample, within family structures or caused by population substructure, is complicated in admixed populations. Inaccurate allele frequencies can bias both kinship estimates and tests for association between subjects and a phenotype. We analyzed the simulated and real family data from Genetic Analysis Workshop 19, and were aware of the simulation model. Results: We found that kinship estimation is more accurate when marker data include common variants whose frequencies are less variable across populations. Estimates of heritability and association vary with age for longitudinally measured traits. Accounting for local ancestry identified different true associations than those identified by a traditional approach. Principal components aid kinship estimation and tests for association, but their utility is influenced by the frequency of the markers used to generate them. Conclusions: Admixed families can provide a powerful resource for detecting disease loci, as well as analytical challenges. Allele frequencies, although difficult to adequately estimate in admixed populations, have a strong impact on the estimation of kinship, ancestry, and association with phenotypes. Approaches that acknowledge population structure in admixed families outperform those which ignore it

    Imaging the pulmonary extracellular matrix

    Get PDF
    The pulmonary extracellular matrix (ECM) plays an important role in the structure and function of the lung. In many respiratory diseases the profile of the ECM reflects pathological changes. The capacity to visualize the ECM and its alterations is of considerable importance to facilitate a better understanding of pulmonary diseases and eventually augment therapeutic solutions. This short review summarizes the current and novel possibilities for imaging the pulmonary ECM by the use of computed tomography (CT), optical coherence tomography (OCT), confocal laser endomicroscopy (CLE) and molecular imaging. While not all these techniques are as yet implemented in standard clinical practice, we address their main features along with the key possibilities for the future

    Comparison of seven commercial RT-PCR diagnostic kits for COVID-19

    Get PDF
    The final months of 2019 witnessed the emergence of a novel coronavirus in the human population. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has since spread across the globe and is posing a major burden on society. Measures taken to reduce its spread critically depend on timely and accurate identification of virus-infected individuals by the most sensitive and specific method available, i.e. real-time reverse transcriptase PCR (RT-PCR). Many commercial kits have recently become available, but their performance has not yet been independently assessed. The aim of this study was to compare basic analytical and clinical performance of selected RT-PCR kits from seven different manufacturers (Altona Diagnostics, BGI, CerTest Biotec, KH Medical, PrimerDesign, R-Biopharm AG, and Seegene). We used serial dilutions of viral RNA to establish PCR efficiency and estimate the 95 % limit of detection (LOD95). Furthermore, we ran a panel of SARS-CoV-2-positive clinical samples (n = 13) for a preliminary evaluation of clinical sensitivity. Finally, we used clinical samples positive for non-coronavirus respiratory viral infections (n = 6) and a panel of RNA from related human coronaviruses to evaluate assay specificity. PCR efficiency was ≥96 % for all assays and the estimated LOD95 varied within a 6-fold range. Using clinical samples, we observed some variations in detection rate between kits. Importantly, none of the assays showed cross-reactivity with other respiratory (corona)viruses, except as expected for the SARS-CoV-1 E-gene. We conclude that all RT-PCR kits assessed in this study may be used for routine diagnostics of COVID-19 in patients by experienced molecular diagnostic laboratories

    Identity-by-descent estimation with population- and pedigree-based imputation in admixed family data

    Get PDF
    BACKGROUND: In the past few years, imputation approaches have been mainly used in population-based designs of genome-wide association studies, although both family- and population-based imputation methods have been proposed. With the recent surge of family-based designs, family-based imputation has become more important. Imputation methods for both designs are based on identity-by-descent (IBD) information. Apart from imputation, the use of IBD information is also common for several types of genetic analysis, including pedigree-based linkage analysis. METHODS: We compared the performance of several family- and population-based imputation methods in large pedigrees provided by Genetic Analysis Workshop 19 (GAW19). We also evaluated the performance of a new IBD mapping approach that we propose, which combines IBD information from known pedigrees with information from unrelated individuals. RESULTS: Different combinations of the imputation methods have varied imputation accuracies. Moreover, we showed gains from the use of both known pedigrees and unrelated individuals with our IBD mapping approach over the use of known pedigrees only. CONCLUSIONS: Our results represent accuracies of different combinations of imputation methods that may be useful for data sets similar to the GAW19 pedigree data. Our IBD mapping approach, which uses both known pedigree and unrelated individuals, performed better than classical linkage analysis

    Case of seasonal reassortant A(H1N2) influenza virus infection, the Netherlands, March 2018.

    Get PDF
    A seasonal reassortant A(H1N2) influenza virus harbouring genome segments from seasonal influenza viruses A(H1N1)pdm09 (HA and NS) and A(H3N2) (PB2, PB1, PA, NP, NA and M) was identified in March 2018 in a 19-months-old patient with influenza-like illness (ILI) who presented to a general practitioner participating in the routine sentinel surveillance of ILI in the Netherlands. The patient recovered fully. Further epidemiological and virological investigation did not reveal additional cases

    Admixture mapping implicates 13q33.3 as ancestry-of-origin locus for Alzheimer disease in Hispanic and Latino populations

    Get PDF
    Alzheimer disease (AD) is the most common form of senile dementia, with high incidence late in life in many populations including Caribbean Hispanic (CH) populations. Such admixed populations, descended from more than one ancestral population, can present challenges for genetic studies, including limited sample sizes and unique analytical constraints. Therefore, CH populations and other admixed populations have not been well represented in studies of AD, and much of the genetic variation contributing to AD risk in these populations remains unknown. Here, we conduct genome-wide analysis of AD in multiplex CH families from the Alzheimer Disease Sequencing Project (ADSP). We developed, validated, and applied an implementation of a logistic mixed model for admixture mapping with binary traits that leverages genetic ancestry to identify ancestry-of-origin loci contributing to AD. We identified three loci on chromosome 13q33.3 associated with reduced risk of AD, where associations were driven by Native American (NAM) ancestry. This AD admixture mapping signal spans the FAM155A, ABHD13, TNFSF13B, LIG4, and MYO16 genes and was supported by evidence for association in an independent sample from the Alzheimer's Genetics in Argentina—Alzheimer Argentina consortium (AGA-ALZAR) study with considerable NAM ancestry. We also provide evidence of NAM haplotypes and key variants within 13q33.3 that segregate with AD in the ADSP whole-genome sequencing data. Interestingly, the widely used genome-wide association study approach failed to identify associations in this region. Our findings underscore the potential of leveraging genetic ancestry diversity in recently admixed populations to improve genetic mapping, in this case for AD-relevant loci.Fil: Horimoto, Andrea R.V.R.. University of Washington; Estados UnidosFil: Boyken, Lisa A.. University of Washington; Estados UnidosFil: Blue, Elizabeth E.. University of Washington; Estados Unidos. Brotman Baty Institute for Precision Medicine; Estados UnidosFil: Grinde, Kelsey E.. University of Washington; Estados Unidos. Macalester College; Estados UnidosFil: Nafikov, Rafael A.. University of Washington; Estados UnidosFil: Sohi, Harkirat K.. University of Washington; Estados UnidosFil: Nato, Alejandro Q.. University of Washington; Estados Unidos. Marshall University; Estados UnidosFil: Bis, Joshua C.. University of Washington; Estados UnidosFil: Brusco, Luis Ignacio. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Morelli, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Ramirez, Alfredo Jose. University Of Cologne; Alemania. Universitat Bonn; Alemania. German Center for Neurodegenerative Diseases; Alemania. University Of Texas Health Science Center At San Antonio (ut Health San Antonio) ; University Of Texas At San Antonio; . Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; ArgentinaFil: Dalmasso, Maria Carolina. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; Argentina. University Of Cologne; AlemaniaFil: Temple, Seth. University of Washington; Estados UnidosFil: Satizabal, Claudia. University Of Texas Health Science Center At San Antonio (ut Health San Antonio) ; University Of Texas At San Antonio; . University of Texas at San Antonio; Estados UnidosFil: Browning, Sharon R.. University of Washington; Estados UnidosFil: Seshadri, Sudha. University Of Texas Health Science Center At San Antonio (ut Health San Antonio) ; University Of Texas At San Antonio; . University of Texas at San Antonio; Estados UnidosFil: Wijsman, Ellen M.. University of Washington; Estados UnidosFil: Thornton, Timothy A.. University of Washington; Estados Unido

    Influenza Infection in Ferrets with SARS-CoV-2 Infection History

    Get PDF
    Nonpharmaceutical interventions (NPIs) to contain the SARS-CoV-2 pandemic drastically reduced human-to-human interactions, decreasing the circulation of other respiratory viruses, as well. Consequently, influenza virus circulation, which is normally responsible for 3 to 5 million hospitalizations per year globally, was significantly reduced. With the downscaling of the NPI countermeasures, there is a concern for increased influenza disease, particularly in individuals suffering from postacute effects of SARS-CoV-2 infection. To investigate this, we performed a sequential influenza H1N1 infection 4 weeks after an initial SARS-CoV-2 infection in ferrets. Upon H1N1 infection, ferrets that were previously infected with SARS-CoV-2 showed an increased tendency to develop clinical signs, compared to the control H1N1-infected animals. A histopathological analysis indicated only a slight increase for type II pneumocyte hyperplasia and bronchitis. Thus, the effects of the sequential infection appeared minor. However, ferrets were infected with B.1.351-SARS-CoV-2, the beta variant of concern, which replicated poorly in our model. The histopathology of the respiratory organs was mostly resolved 4 weeks after the SARS-CoV-2 infection, with only reminiscent histopathological features in the upper respiratory tract. Nevertheless, SARS-CoV-2 specific cellular and humoral responses were observed, confirming an established infection. On account of a modest trend toward the enhancement of the influenza disease, even upon a mild SARS-CoV-2 infection, our findings suggest that a stronger SARS-CoV-2 infection and its consequent, long-term effects could have a greater impact on the outcome of disease after a sequential influenza infection. Hence, the influenza vaccination of individuals suffering from postacute SARS-CoV-2 infection effects may be considered an avertible measure for such a scenario. IMPORTANCE During the COVID-19 pandemic, the use of face masks, social distancing, and isolation were effective not only in decreasing the circulation of SARS-CoV-2 but also in reducing other respiratory viruses, such as influenza. With fewer restrictions currently in place, influenza is slowly returning. In the meantime, people who are still suffering from long-COVID could be more vulnerable to an influenza virus infection and could develop a more severe influenza disease. This study provides directions to the effect of a previous SARS-CoV-2 exposure on influenza disease severity in a ferret model. This model is highly valuable to test sequential infections under controlled settings for translation to humans. We could not induce clear long-term COVID-19 effects, as the SARS-CoV-2 infections in the ferrets were mild. However, we still observed a slight increase in influenza disease severity compared to ferrets that had not encountered SARS-CoV-2 before. Therefore, it may be advisable to include long-COVID patients as a risk group for influenza vaccination

    Respiratory syncytial, parainfluenza and influenza virus infection in young children with acute lower respiratory infection in rural Gambia.

    Get PDF
    Respiratory viral infections contribute significantly to morbidity and mortality worldwide, but representative data from sub-Saharan Africa are needed to inform vaccination strategies. We conducted population-based surveillance in rural Gambia using standardized criteria to identify and investigate children with acute lower respiratory infection (ALRI). Naso- and oropharyngeal swabs were collected. Each month from February through December 2015, specimens from 50 children aged 2-23 months were randomly selected to test for respiratory syncytial (RSV), parainfluenza (PIV) and influenza viruses. The expected number of viral-associated ALRI cases in the population was estimated using statistical simulation that accounted for the sampling design. RSV G and F proteins and influenza hemagglutinin genes were sequenced. 2385 children with ALRI were enrolled, 519 were randomly selected for viral testing. One or more viruses were detected in 303/519 children (58.4%). RSV-A was detected in 237 and RSV-B in seven. The expected incidence of ALRI associated with RSV, PIV or influenza was 140 cases (95% CI, 131-149) per 1000 person-years; RSV incidence was 112 cases (95% CI, 102-122) per 1000 person-years. Multiple strains of RSV and influenza circulated during the year. RSV circulated throughout most of the year and was associated with eight times the number of ALRI cases compared to PIV or IV. Gambian RSV viruses were closely related to viruses detected in other continents. An effective RSV vaccination strategy could have a major impact on the burden of ALRI in this setting

    Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR

    Get PDF
    BackgroundThe ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur.AimWe aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available.MethodsHere we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology.ResultsThe workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive - Global (EVAg), a European Union infrastructure project.ConclusionThe present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks
    corecore