283 research outputs found

    In situ conservation of crop wild relatives

    Get PDF
    Poster presented at 13. Meeting of the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) held in FAO, Rome (Italy), 18-22 Feb 200

    Investigation of Daily Macronutrient intakes by Sri Lankan Managerial Level Employees working in the Private Sector

    Full text link
    With changes of lifestyles and social values in the food culture, many individuals working as managerial level employees in the as private sector are seemingly selecting more improper daily meal combinations. This study was designed to determine whether this occurrence can have a severe impact to imbalance the daily nutrient intakes by the individuals in the mentioned social segment, which increase the tendency of having nutrition related chronic diseases. In a hierarchy range from junior executives to CEOs of private sector organizations, 800 individuals were selected by disproportionate stratified random sampling. Selected individuals are interviewed using a structured questionnaire to assess their daily food combinations and their consumed portion sizes. Frequently consumed meal combinations were then analyzed for their macronutrient composition, to compare with world Health organizations’ (WHO) Reference Dietary Intake (RDI) levels of nutrients. The results reveal of significantly (p<0.05) higher daily fat (45.3 ±1.7 g/day) and protein (65.2 ±1.4 g/day) intakes than the WHO recommendation levels and significantly (p<0.05) lower in dietary fibre (22.3 ±1.1 g/day) contents by selected participants. Carbohydrate intake (133.1 ±2.2 g/day) was higher than reference levels but was not significant (p>0.05). This indicates of a considerable risk for many individuals in the concerned social segment, of having non-communicable diseases, if observed dietary patterns are continued

    Biosolids application and soil organic carbon dynamics: a meta-analysis.

    Get PDF
    Soil carbon sequestration has been recognized as a potential “direct action” tool in mitigating climate change. Organic matter rich biosolids from wastewater industry has been applied to soils as one of the strategies to the carbon sequestration. However, most of the short- and long-term studies as influenced by land application of biosolids have been showed quite inconsistent results in carbon increments in soils. Therefore, soil carbon sequestration resulted by biosolids application is yet to be needed further studies to elucidate. This study presents a comprehensive MetaAnalysis (MA) on soil carbon sequestration as influenced by biosolids application. Datasets comprised with 175 independent paired-treatments across 25 countries were fed in to Comprehensive Meta-Analysis (version 3) programme and modelled. The MA compared Soil Organic Carbon (SOC as g/kg) changes as the functions of time after biosolids application and its rate over twelve groups under two categories: application age (time after application) as 11 year, and cumulative application rate as 251 tonnes/ha.The fixed model is applied to explicate overall effects of analysed data derived from the MA. The MA showed overall positive influences on soil carbon sequestration towards increasing SOC. For example, the highest effect on SOC was observed at 1-3 age group suggesting the need of short term biosolids application to develop carbon storage in soils. Overall, this study shows that land application of biosolids can be used to increase soil carbon storage and therefore has the potential to be a strategy for mitigating climate change towards carbon sequestration in soils

    Bioethanol production from <em>Chara globularis</em> using yeast and yield improvement by optimization of conditions

    Get PDF
    The rising population, depletion of petroleum-based fossil fuel and atmospheric contaminations by combustion of fossil fuel have opened avenues for alternative, eco-friendly and renewable energy sources. Bioethanol is an alternative and renewable source that has drawn attention due environmental concerns and energy security with non-renewable sources. This study was aimed at determining the potential bioethanol producing freshwater flora that are abundantly available in the Northern Province of Sri Lanka using Saccharomyces cerevisiae and to optimize the fermentation conditions to enhance the ethanol yield from Chara globularis. Freshwater flora such as C. globularis, Cabomba caroliniana, Spirodela polyrhiza, Salvinia minima, Salvinia natans, Wolffia arrhiza and Wolffia globosa were hydrolysed with 1M sulfuric acid solution to determine the reducing sugar and bioethanol yields. C. globularis produced a higher amount of reducing sugar and bioethanol than other species tested. When C. globularis was pre-treated with 1 M acid solutions (sulfuric acid, nitric acid, and hydrochloric acid) and alkaline solutions (sodium hydroxide and potassium hydroxide), a higher reducing sugar and bioethanol yields were obtained with sulfuric acid. When bioethanol was produced from C. globularis using S. cerevisiae following three different hydrolysis methods viz., acid hydrolysis (1 M sulfuric acid), enzymatic hydrolysis (1% alphaamylase) and combination of chemical and enzymatic hydrolysis (1 M sulfuric acid and 1% alpha-amylase), the combination of chemical and enzymatic hydrolysis gave a higher yield, thus was selected. The conditions for fermentation of C. globularis substrate using S. cerevisiae were optimized sequentially by changing one factor at a time while keeping the other variables constant. After the optimization of fermentation time (24 hours), operating temperature (35 °C), rotation speed (200 rpm) and sulfuric acid concentration for combined pre-treatment (0.75 M) with an inoculum size of 100 g l-1, bioethanol yield was increased

    Engineering rotating apical-out airway organoid for assessing respiratory cilia motility

    Get PDF
    Motile cilia project from the airway apical surface and directly interface with inhaled external environment. Owing to cilia\u27s nanoscale dimension and high beating frequency, quantitative assessment of their motility remains a sophisticated task. Here we described a robust approach for reproducible engineering of apical-out airway organoid (AOAO) from a defined number of cells. Propelled by exterior-facing cilia beating, the mature AOAO exhibited stable rotational motion when surrounded by Matrigel. We developed a computational framework leveraging computer vision algorithms to quantify AOAO rotation and correlated it with the direct measurement of cilia motility. We further established the feasibility of using AOAO rotation to recapitulate and measure defective cilia motility caused by chemotherapy-induced toxicity and by CCDC39 mutations in cells from patients with primary ciliary dyskinesia. We expect our rotating AOAO model and the associated computational pipeline to offer a generalizable framework to expedite the modeling of and therapeutic development for genetic and environmental ciliopathies
    corecore