37 research outputs found
Ants, fire, and bark traits affect how African savanna trees recover following damage
Bark damage resulting from elephant feeding is common in African savanna trees with subsequent interactions with fire, insects, and other pathogens often resulting in tree mortality. Yet, surprisingly little is known about how savanna trees respond to bark damage. We addressed this by investigating how the inner bark of marula (Sclerocarya birrea), a widespread tree species favoured by elephants, recovers after bark damage. We used a longâterm fire experiment in the Kruger National Park to measure bark recovery with and without fire. At 24 months postâdamage, mean wound closure was 98, 92, and 72%, respectively, in annual and biennial burns and fireâexclusion treatments. Fire exclusion resulted in higher rates of ant colonization of bark wounds, and such ant colonization resulted in significantly lower bark recovery. We also investigated how ten common savanna tree species respond to bark damage and tested for relationships between bark damage, bark recovery, and bark traits while accounting for phylogeny. We found phylogenetic signal in bark dry matter content, bark N and bark P, but not in bark thickness. Bark recovery and damage was highest in species which had thick moist inner bark and low wood densities (Anacardiaceae), intermediate in species which had moderate inner bark thickness and wood densities (Fabaceae) and lowest in species which had thin inner bark and high wood densities (Combretaceae). Elephants prefer species with thick, moist inner bark, traits that also appear to result in faster recovery rates
A thorny issue: Woody plant defence and growth in an East African savanna
Recent work suggests that savanna woody plant species utilise two different strategies based on their defences against herbivory; a low nutrient/high chemical defence strategy and a nutrition paired with mostly architectural defences strategy. The concept that chemical and structural defences can augment each other and do not necessarily trade-off has emanated from this work. In this study, we examine woody plant defence strategies, how these respond to herbivore removal and how they affect plant growth in an East African savanna. At three paired long-term exclosure sites with high browser and mixed-feeder densities at Mpala Ranch, Kenya, we investigated: (a) whether defences employed by the dominant fine- and broad-leaved woody savanna species form defence strategies and if these align with previously proposed strategies, (b) how nine key plant defence traits respond to herbivore removal and (c) how effective the different defence strategies are at protecting against intense herbivory (by measuring plant growth with and without herbivores present). We identified three defence strategies. We found a group (a) with high N, short spines and high N-free secondary metabolites, a group (b) with high N, long spines and low N-free secondary metabolites and a group (c) with moderate N, no spines and low N-free secondary metabolites (most likely defended by unmeasured chemical defences). Structural defences (spine length, branching) were generally found to be induced by herbivory, leaf available N increased or did not respond, and N-free secondary metabolites decreased or did not respond to herbivory. Species with long spines combined with increased âcaginessâ (dense canopy architecture arising from complex arrangement of numerous woody and spiny axis categories) of branches, maintained the highest growth under intense browsing, compared to species with short spines and high N-free secondary metabolites and species with no spines and low N-free secondary metabolites. Synthesis. At our study site, structural traits (i.e. spines, increased caginess) were the most inducible and effective defences against intense mammalian herbivory. We propose that high levels of variability in the way that nutrient and defence traits combine may contribute to the coexistence of closely related species comprising savanna woody communities
Reflecting on research produced after more than 60 years of exclosures in the Kruger National Park
All data, in this case works of literature reviewed have been
summarised in Online Appendix 2.Herbivores are a main driver of ecosystem patterns and processes in semi-arid savannas, with their effects clearly observed when they are excluded from landscapes. Starting in the 1960s, various herbivore exclosures have been erected in the Kruger National Park (KNP), for research and management purposes. These exclosures vary from very small (1 m2) to relatively large (almost 900 ha), from short-term (single growing season) to long-term (e.g. some of the exclosures were erected more than 60 years ago), and are located on different geologies and across a rainfall gradient. We provide a summary of the history and specifications of various exclosures. This is followed by a systematic overview of mostly peer-reviewed literature resulting from using KNP exclosures as research sites. These 75 articles cover research on soils, vegetation dynamics, herbivore exclusion on other faunal groups and disease. We provide general patterns and mechanisms in a synthesis section, and end with recommendations to increase research outputs and productivity for future exclosure experiments. CONSERVATION IMPLICATIONS : Herbivore exclosures in the KNP have become global research platforms, that have helped in the training of ecologists, veterinarians and field biologists, and have provided valuable insights into savanna dynamics that would otherwise have been hard to gain. In an age of dwindling conservation funding, we make the case for the value added by exclosures and make recommendations for their continued use as learning tools in complex African savannas.South African Environment Observation Network (SAEON).http://www.koedoe.co.zaam2023Paraclinical Science
Browser impacts in Mapungubwe National Park, South Africa: Should we be worried?
This study explores the impact of browsers on vegetation types within the Mapungubwe National Park and specifically whether rocky outcrops or ridges in the park serve as refugia from browsers, particularly elephants. We sampled 80 transects at 20 sites and recorded 1740 plants comprising 65 species. We found that a high proportion (> 80%) of the woody vegetation sampled indicated browser utilisation. Although certain woody species (e.g. Albizia harveyi, Boscia albitrunca, Lannea schweinfurthii) appeared to be preferred by browsers, browsing levels were relatively high among all woody species. High levels of browsing by herbivores other than elephants suggest that they have a significant impact on the parkâs vegetation. We did not find that rocky ridges acted as refugia to browsers, but instead found that vegetation in rocky ridges was more severely impacted by browsers than vegetation in flat areas, despite vegetation being more accessible in flat areas. If elephant numbers continue to increase at the current rate (e.g. elephant numbers doubled between 2007 and 2010), we predict that some of the heavily utilised species will become locally rare over time.
Conservation implications: High levels of browsing by both elephant and smaller herbivores contribute to significant impacts on vegetation away from rivers in Mapungubwe National Park. Without management interventions that address both types of impact, structural and species diversity are bound to decrease over the short to medium term
<i>Virgilia divaricata</i> may facilitate forest expansion in the afrotemperate forests of the southern Cape, South Africa
Virgilia divaricata is a fast-growing nitrogen-fixing tree species often found on the margins of forest in the southern Cape of South Africa and is particularly abundant after fire. However, V. divaricatamay invade fynbos even in the absence of fire and it has been described as a forest precursor. We investigated whether V. divaricata enriches soil fertility after its invasion into fynbos areas adjacent to forests. We measured soil organic carbon and soil nutrients at four sites. At each site, three vegetation types (forest, V. divaricata and fynbos) were examined on the same soil type and at the same elevation. Our results showed that, on average, soils taken from V. divaricata stands had higher nitrogen and phosphorus values than the adjacent fynbos soils, with either lower or similar values to the adjacent forest soils. Higher soil fertility under V. divaricata, together with their shading effect, may create conditions favourable for shade-loving forest species dependent on an efficient nutrient cycle in the topsoil layers, and less favourable for shade-hating fynbos species, which are generally adapted to low soil fertility. We suggest that the restoration of the nutrient cycle found in association with forest may be accelerated under V. divaricata compared with other forest precursor species, which has important consequences for the use of V. divaricata in ecosystem restoration.
Conservation implications: Alien plantations in the Outeniqua Mountains are being phased out and the areas are being incorporated into the Garden Route National Park. Fynbos areas are increasingly being invaded by forest and thicket species owing to fire suppression in lower-lying areas. An improved understanding of the fynbosâforest boundary dynamics will aid in efficient management and restoration of these ecosystems
Herbivores shape woody plant communities in the Kruger National Park: Lessons from three long-term exclosures
The role of grazers in determining vegetation community compositions and structuring plant communities is well recognised in grassy systems. The role of browsers in affecting savanna woody plant communities is less clear. We used three long-term exclosures in the Kruger National Park to determine the effect of browsers on species compositions and population structures of woody communities. Species assemblages, plant traits relating to browsing and soil nutrients were compared inside and outside of the exclosures. Our results showed that browsers directly impact plant species distributions, densities and population structures by actively selecting for species with traits which make them desirable to browsers. Species with high leaf nitrogen, low total phenolic content and low acid detergent lignin appeared to be favoured by herbivores and therefore tend to be rare outside of the exclosures. This study also suggested that browsers have important indirect effects on savanna functioning, as the reduction of woody cover can result in less litter of lower quality, which in turn can result in lower soil fertility. However, the magnitude of browser effects appeared to depend on inherent soil fertility and climate.
Conservation implications: Browsers were shown to have significant impacts on plant communities. They have noticeable effects on local species diversity and population structure, as well as soil nutrients. These impacts are shown to be related to the underlying geology and climate. The effects of browsers on woody communities were shown to be greater in low rainfall, fertile areas compared to high rainfall, infertile soils
Data from: Insect outbreaks alter nutrient dynamics in a southern African savanna: patchy defoliation of Colophospermum mopane savanna by Imbrasia belina larvae
Severe defoliation is expected to affect nutrient cycling of an impacted system. Outbreaks of the lepidopteran Imbrasia belina (mopane worm) affect discrete patches of Colophospermum mopane trees in semi-arid savanna; larvae may completely defoliate trees for up to six weeks during each of the early and late growing seasons. We studied the impact of mopane worm outbreaks on the availability of nitrogen, phosphorus and potassium within mopane savanna by comparing defoliated with non-defoliated savanna patches. Individual studies conducted were production and nutrient content of leaf biomass and worm frass that determine nutrient input to the soil, and soil nutrient concentrations. Within an outbreak area 44 percent of trees supported ±29,000 worms/ha who deposited ±640 kg/ha dry weight of frass at 1.4 g of frass/day (fourth or fifth instar) compared with an average 1645 kg/ha dry weight of leaf on trees most of which should be deposited by litter fall at the end of the growing season. Nutrient concentrations in frass compared with senescent mopane leaves were two-fold higher for phosphorus, 10 percent higher for potassium, and 20 percent less for nitrogen. Soil nutrient content beneath defoliated trees was higher for phosphorus and potassium but there was no difference for nitrogen. Invertebrate herbivory appears to be an important driver for mopane savanna but has been largely neglected