81 research outputs found

    An Alpha-Catulin Homologue Controls Neuromuscular Function through Localization of the Dystrophin Complex and BK Channels in Caenorhabditis elegans

    Get PDF
    The large conductance, voltage- and calcium-dependent potassium (BK) channel serves as a major negative feedback regulator of calcium-mediated physiological processes and has been implicated in muscle dysfunction and neurological disorders. In addition to membrane depolarization, activation of the BK channel requires a rise in cytosolic calcium. Localization of the BK channel near calcium channels is therefore critical for its function. In a genetic screen designed to isolate novel regulators of the Caenorhabditis elegans BK channel, SLO-1, we identified ctn-1, which encodes an α-catulin homologue with homology to the cytoskeletal proteins α-catenin and vinculin. ctn-1 mutants resemble slo-1 loss-of-function mutants, as well as mutants with a compromised dystrophin complex. We determined that CTN-1 uses two distinct mechanisms to localize SLO-1 in muscles and neurons. In muscles, CTN-1 utilizes the dystrophin complex to localize SLO-1 channels near L-type calcium channels. In neurons, CTN-1 is involved in localizing SLO-1 to a specific domain independent of the dystrophin complex. Our results demonstrate that CTN-1 ensures the localization of SLO-1 within calcium nanodomains, thereby playing a crucial role in muscles and neurons

    Genomic Organization, Molecular Diversification, and Evolution of Antimicrobial Peptide Myticin-C Genes in the Mussel (Mytilus galloprovincialis)

    Get PDF
    Myticin-C is a highly variable antimicrobial peptide associated to immune response in Mediterranean mussel (Mytilus galloprovincialis). In this study, we tried to ascertain the genetic organization and the mechanisms underlying myticin-C variation and evolution of this gene family. We took advantage of the large intron size variation to find out the number of myticin-C genes. Using fragment analysis a maximum of four alleles was detected per individual at both introns in a large mussel sample suggesting a minimum of two myticin-C genes. The transmission pattern of size variants in two full-sib families was also used to ascertain the number of myticin-C genes underlying the variability observed. Results in both families were in accordance with two myticin-C genes organized in tandem. A more detailed analysis of myticin-C variation was carried out by sequencing a large sample of complementary (cDNA) and genomic DNA (gDNA) in 10 individuals. Two basic sequences were detected at most individuals and several sequences were constituted by combination of two different basic sequences, strongly suggesting somatic recombination or gene conversion. Slight within-basic sequence variation detected in all individuals was attributed to somatic mutation. Such mutations were more frequently at the C-terminal domain and mostly determined non-synonymous substitutions. The mature peptide domain showed the highest variation both in the whole cDNA and in the basic-sequence samples, which is in accordance with the pathogen recognition function associated to this domain. Although most tests suggested neutrality for myticin-C variation, evidence indicated positive selection in the mature peptide and C-terminal region. Three main highly supported clusters were observed when reconstructing phylogeny on basic sequences, meiotic recombination playing a relevant role on myticin-C evolution. This study demonstrates that mechanisms to generate molecular variation similar to that observed in vertebrates are also operating in molluscs

    Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    Get PDF

    Hyper-IgG4 disease: report and characterisation of a new disease

    Get PDF
    BACKGROUND: We highlight a chronic inflammatory disease we call 'hyper-IgG4 disease', which has many synonyms depending on the organ involved, the country of origin and the year of the report. It is characterized histologically by a lymphoplasmacytic inflammation with IgG4-positive cells and exuberant fibrosis, which leaves dense fibrosis on resolution. A typical example is idiopathic retroperitoneal fibrosis, but the initial report in 2001 was of sclerosing pancreatitis. METHODS: We report an index case with fever and severe systemic disease. We have also reviewed the histology of 11 further patients with idiopathic retroperitoneal fibrosis for evidence of IgG4-expressing plasma cells, and examined a wide range of other inflammatory conditions and fibrotic diseases as organ-specific controls. We have reviewed the published literature for disease associations with idiopathic, systemic fibrosing conditions and the synonyms: pseudotumour, myofibroblastic tumour, plasma cell granuloma, systemic fibrosis, xanthofibrogranulomatosis, and multifocal fibrosclerosis. RESULTS: Histology from all 12 patients showed, to varying degrees, fibrosis, intense inflammatory cell infiltration with lymphocytes, plasma cells, scattered neutrophils, and sometimes eosinophilic aggregates, with venulitis and obliterative arteritis. The majority of lymphocytes were T cells that expressed CD8 and CD4, with scattered B-cell-rich small lymphoid follicles. In all cases, there was a significant increase in IgG4-positive plasma cells compared with controls. In two cases, biopsies before and after steroid treatment were available, and only scattered plasma cells were seen after treatment, none of them expressing IgG4. Review of the literature shows that although pathology commonly appears confined to one organ, patients can have systemic symptoms and fever. In the active period, there is an acute phase response with a high serum concentration of IgG, and during this phase, there is a rapid clinical response to glucocorticoid steroid treatment. CONCLUSION: We believe that hyper-IgG4 disease is an important condition to recognise, as the diagnosis can be readily verified and the outcome with treatment is very good

    Terrestrische und semiterrestrische Ökosysteme

    Get PDF

    The genetic heterogeneity of colorectal cancer predisposition - guidelines for gene discovery

    Get PDF

    Computer tomography assessment of pedicle screw insertion in percutaneous posterior transpedicular stabilization

    No full text
    Percutaneous insertion of cannulated pedicle screws has been recently developed as a minimally invasive alternative to the open technique during instrumented fusion procedures. Given the reported rate of screw misplacement using open techniques (up to 40%), we considered it important to analyze possible side effects of this new technique. Placement of 60 pedicle screws in 15 consecutive patients undergoing lumbar or lumbosacral fusion, mainly for spondylolisthesis, were analyzed. Axial, coronal, and sagittal reformatted computer tomography images were examined by three observers. Individual and consensus interpretation was obtained for each screw position. Along with frank penetration, we also looked at cortical encroachment of the pedicular wall by the screw. Thirteen percent of the patients (2/15) had severe frank penetration from the screws, while 80% of them (12/15) had some perforation. On axial images the incidence of severe frank pedicle penetration was 3.3% while the overall rate of screw perforation was 23%. In coronal images the overall screw perforation rate rose to 30% while the rate of severe frank pedicle penetration remained unchanged. One patient (6.6%) suffered S1 root symptoms due to a frankly medially misplaced screw, requiring re-operation. This study has shown that percutaneous insertion of cannulated pedicle screws in the lumbar spine is an acceptable procedure. The overall rate of perforation in axial images is below the higher rates reported in the literature but does remain important. Frank penetration of the pedicle was nevertheless low. It remains a demanding technique and has to be performed with extreme care to detail
    corecore