342 research outputs found

    HIV-1 co-infection does not reduce exposure to rifampicin, isoniazid, and pyrazinamide in South African tuberculosis outpatients

    No full text
    There are contrasting data in the literature about antituberculosis plasma drug concentrations in HIV-1-coinfected patients. We report the pharmacokinetics of rifampin, isoniazid, and pyrazinamide in a cohort of patients being treated for active tuberculosis, the majority of whom were coinfected with HIV-1 and had commenced antiretroviral therapy within 2 months of starting antituberculosis treatment. We also examined the association between antituberculosis drug concentrations and reported drug side effects at the 2-month clinical review. One hundred patients with pulmonary tuberculosis (65% coinfected with HIV-1) were intensively sampled to determine rifampin, isoniazid, and pyrazinamide plasma concentrations after 7 to 8 weeks of a daily quadruple-therapy regimen dosed according to World Health Organization (WHO) weight bands. Pharmacokinetic parameters were determined for each patient by using nonlinear mixed-effects models. HIV-1-coinfected patients had lower clearance rates for rifampin (21% decrease) and isoniazid (23% decrease) than HIV-1-uninfected patients, with resulting higher areas under the concentration-time curve from 0 to 24 h (AUC0–24) and maximum concentrations of drug in serum (Cmax). Antiretroviral therapy (ART) that included double-standard-dose lopinavir/ritonavir further lowered rifampin clearance, by 46%, and increased the AUC0–24. The current uniform dosing (per kilogram of body weight) across WHO weight bands was associated with a trend of decreased pharmacokinetic exposures for the lowest weight band. Use of fat-free mass as opposed to total body weight for allometric scaling of clearance significantly improved the model. Ambulant HIV-1-coinfected patients, the majority of whom were coprescribed ART, did not have reduced antituberculosis drug concentrations compared to HIV-1-uninfected patients

    Linezolid population pharmacokinetic model in plasma and cerebrospinal fluid among patients with tuberculosis meningitis

    Get PDF
    BACKGROUND: Linezolid is evaluated in novel treatment regimens for tuberculous meningitis (TBM). Linezolid pharmacokinetics have not been characterized in this population, particularly in cerebrospinal fluid (CSF) where exposures may be affected by changes in protein concentration. Linezolid co-administration with high-dose rifampicin, has also not been studied. We aimed to characterize linezolid plasma and CSF pharmacokinetics in adults with TBM. METHODS: In LASER-TBM pharmacokinetic-substudy, the intervention groups received high-dose rifampicin (35mg/kg) plus linezolid 1200mg/day for 28days, then reduced to 600mg/day. Plasma sampling was done on day 3 (intensive) and on day 28 (sparse). A lumbar CSF sample was obtained on both visits. RESULTS: 30-participants, median(min-max) age and weight of 40(27-56)years and 58(30-96)kg, contributed 247 plasma and 28 CSF observations. Plasma pharmacokinetics was described by one-compartment model with first-order absorption and saturable elimination. Maximal clearance was 7.25L/h, and Km was 27.2mg/L. Rifampicin co-treatment duration did not affect linezolid pharmacokinetics. CSF-Plasma partitioning correlated with CSF total-protein upto 1.2g/L where the partition-coefficient reached maximal value of 37%. Plasma-CSF equilibration half-life was ∼3.5hours. CONCLUSION: Linezolid was readily detected in CSF despite high-dose rifampicin co-administration. These findings support continued clinical evaluation of linezolid plus high-dose rifampicin for the treatment of TBM in adults

    Quantum encryption with certified deletion

    Get PDF
    Given a ciphertext, is it possible to prove the deletion of the underlying plaintext? Since classical ciphertexts can be copied, clearly such a feat is impossible using classical information alone. In stark contrast to this, we show that quantum encodings enable certified deletion. More precisely, we show that it is possible to encrypt classical data into a quantum ciphertext such that the recipient of the ciphertext can produce a classical string which proves to the originator that the recipient has relinquished any chance of recovering the plaintext should the decryption key be revealed. Our scheme is feasible with current quantum technology: the honest parties only require quantum devices for single-qubit preparation and measurements; the scheme is also robust against noise in these devices. Furthermore, we provide an analysis that is suitable in the finite-key regime.Comment: 28 pages, 1 figure. Some technical details modifie

    Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway

    Get PDF
    The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al

    Stochastic Drift in Mitochondrial DNA Point Mutations: A Novel Perspective Ex Silico

    Get PDF
    The mitochondrial free radical theory of aging (mFRTA) implicates Reactive Oxygen Species (ROS)-induced mutations of mitochondrial DNA (mtDNA) as a major cause of aging. However, fifty years after its inception, several of its premises are intensely debated. Much of this uncertainty is due to the large range of values in the reported experimental data, for example on oxidative damage and mutational burden in mtDNA. This is in part due to limitations with available measurement technologies. Here we show that sample preparations in some assays necessitating high dilution of DNA (single molecule level) may introduce significant statistical variability. Adding to this complexity is the intrinsically stochastic nature of cellular processes, which manifests in cells from the same tissue harboring varying mutation load. In conjunction, these random elements make the determination of the underlying mutation dynamics extremely challenging. Our in silico stochastic study reveals the effect of coupling the experimental variability and the intrinsic stochasticity of aging process in some of the reported experimental data. We also show that the stochastic nature of a de novo point mutation generated during embryonic development is a major contributor of different mutation burdens in the individuals of mouse population. Analysis of simulation results leads to several new insights on the relevance of mutation stochasticity in the context of dividing tissues and the plausibility of ROS ”vicious cycle” hypothesis

    Increased Mobility of Metal Oxide Nanoparticles Due to Photo and Thermal Induced Disagglomeration

    Get PDF
    Significant advances have been made on our understanding of the fate and transport of engineered nanomaterials. One unexplored aspect of nanoparticle aggregation is how environmental stimuli such as light exposure and temperature variations affect the mobility of engineered nanoparticles. In this study, TiO2, ZnO, and CeO2 were chosen as model materials for investigating the mobility of nanoparticles under three external stimuli: heat, light and sonication. Sunlight and high power sonication were able to partially disagglomerate metal oxide clusters, but primary particles bonded by solid state necks were left intact. A cycle of temperature increase from 25°C to 65°C and then decrease back was found to disagglomerate the compact clusters in the heating phase and reagglomerate them as more open fractal structures during the cooling phase. A fractal model summing the pair-wise DLVO interactions between primary particles within two fractal agglomerates predicts weak attractions on the order of a few kT. Our study shows that common environmental stimuli such as light exposure or temperature variation can disagglomerate nanoparticle clusters and enhance their mobility in open waters. This phenomenon warrants attention since it is likely that metal oxide nanoparticles will experience these natural stimuli during their transport in the environment

    MRPS25 mutations impair mitochondrial translation and cause encephalomyopathy

    Get PDF
    Mitochondrial disorders are clinically and genetically heterogeneous and are associated with a variety of disease mechanisms. Defects of mitochondrial protein synthesis account for the largest subgroup of disorders manifesting with impaired respiratory chain capacity; yet, only a few have been linked to dysfunction in the protein components of the mitochondrial ribosomes. Here, we report a subject presenting with dyskinetic cerebral palsy and partial agenesis of the corpus callosum, while histochemical and biochemical analyses of skeletal muscle revealed signs of mitochondrial myopathy. Using exome sequencing, we identified a homozygous variant c.215C>T in MRPS25, which encodes for a structural component of the 28S small subunit of the mitochondrial ribosome (mS25). The variant segregated with the disease and substitutes a highly conserved proline residue with leucine (p.P72L) that, based on the high-resolution structure of the 28S ribosome, is predicted to compromise inter-protein contacts and destabilize the small subunit. Concordant with the in silico analysis, patient’s fibroblasts showed decreased levels of MRPS25 and other components of the 28S subunit. Moreover, assembled 28S subunits were scarce in the fibroblasts with mutant mS25 leading to impaired mitochondrial translation and decreased levels of multiple respiratory chain subunits. Crucially, these abnormalities were rescued by transgenic expression of wild-type MRPS25 in the mutant fibroblasts. Collectively, our data demonstrate the pathogenicity of the p.P72L variant and identify MRPS25 mutations as a new cause of mitochondrial translation defect

    Ezrin Ubiquitylation by the E3 Ubiquitin Ligase, WWP1, and Consequent Regulation of Hepatocyte Growth Factor Receptor Activity

    Get PDF
    The membrane cytoskeleton linker ezrin participates in several functions downstream of the receptor Met in response to Hepatocyte Growth Factor (HGF) stimulation. Here we report a novel interaction of ezrin with a HECT E3 ubiquitin ligase, WWP1/Aip5/Tiul1, a potential oncogene that undergoes genomic amplification and overexpression in human breast and prostate cancers. We show that ezrin binds to the WW domains of WWP1 via the consensus motif PPVY477 present in ezrin’s C-terminus. This association results in the ubiquitylation of ezrin, a process that requires an intact PPVY477 motif. Interestingly ezrin ubiquitylation does not target the protein for degradation by the proteasome. We find that ezrin ubiquitylation by WWP1 in epithelial cells leads to the upregulation of Met level in absence of HGF stimulation and increases the response of Met to HGF stimulation as measured by the ability of the cells to heal a wound. Interestingly this effect requires ubiquitylated ezrin since it can be rescued, after depletion of endogenous ezrin, by wild type ezrin but not by a mutant of ezrin that cannot be ubiquitylated. Taken together our data reveal a new role for ezrin in Met receptor stability and activity through its association with the E3 ubiquitin ligase WWP1. Given the role of Met in cell proliferation and tumorigenesis, our results may provide a mechanistic basis for understanding the role of ezrin in tumor progression

    Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees

    Get PDF
    This research was funded jointly by BBSRC, DEFRA, NERC, the Scottish Government and The Wellcome Trust, under the Insect Pollinators Initiative (UK) grant BB/1000313/1(CNC).There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species.Publisher PDFPeer reviewe

    Common MicroRNA Signatures in Cardiac Hypertrophic and Atrophic Remodeling Induced by Changes in Hemodynamic Load

    Get PDF
    BACKGROUND: Mechanical overload leads to cardiac hypertrophy and mechanical unloading to cardiac atrophy. Both conditions produce similar transcriptional changes including a re-expression of fetal genes, despite obvious differences in phenotype. MicroRNAs (miRNAs) are discussed as superordinate regulators of global gene networks acting mainly at the translational level. Here, we hypothesized that defined sets of miRNAs may determine the direction of cardiomyocyte plasticity responses. METHODOLOGY/PRINCIPAL FINDINGS: We employed ascending aortic stenosis (AS) and heterotopic heart transplantation (HTX) in syngenic Lewis rats to induce mechanical overloading and unloading, respectively. Heart weight was 26±3% higher in AS (n = 7) and 33±2% lower in HTX (n = 7) as compared to sham-operated (n = 6) and healthy controls (n = 7). Small RNAs were enriched from the left ventricles and subjected to quantitative stem-loop specific RT-PCR targeting a panel of 351 miRNAs. In total, 153 miRNAs could be unambiguously detected. Out of 72 miRNAs previously implicated in the cardiovascular system, 40 miRNAs were regulated in AS and/or HTX. Overall, HTX displayed a slightly broader activation pattern for moderately regulated miRNAs. Surprisingly, however, the regulation of individual miRNA expression was strikingly similar in direction and amplitude in AS and HTX with no miRNA being regulated in opposite direction. In contrast, fetal hearts from Lewis rats at embryonic day 18 exhibited an entirely different miRNA expression pattern. CONCLUSIONS: Taken together, our findings demonstrate that opposite changes in cardiac workload induce a common miRNA expression pattern which is markedly different from the fetal miRNA expression pattern. The direction of postnatal adaptive cardiac growth does, therefore, not appear to be determined at the level of single miRNAs or a specific set of miRNAs. Moreover, miRNAs themselves are not reprogrammed to a fetal program in response to changes in hemodynamic load
    corecore