1,019 research outputs found

    Polarized kilonovae from black hole-neutron star mergers

    Get PDF
    We predict linear polarization for a radioactively powered kilonova following the merger of a black hole and a neutron star. Specifically, we perform 3D Monte Carlo radiative transfer simulations for two different models, both featuring a lanthanide-rich dynamical ejecta component from numerical-relativity simulations while only one including an additional lanthanide-free disc-wind component. We calculate polarization spectra for nine different orientations at 1.5, 2.5, and 3.5 d after the merger and in the 0.1-2 μ wavelength range. We find that both models are polarized at a detectable level 1.5 d after the merger while show negligible levels thereafter. The polarization spectra of the two models are significantly different. The model lacking a disc wind shows no polarization in the optical, while a signal increasing at longer wavelengths and reaching ∼ 1-6 per cent at 2 μ depending on the orientation. The model with a disc-wind component, instead, features a characteristic 'double-peak' polarization spectrum with one peak in the optical and the other in the infrared. Polarimetric observations of future events will shed light on the debated neutron richness of the disc-wind component. The detection of optical polarization would unambiguously reveal the presence of a lanthanide-free disc-wind component, while polarization increasing from zero in the optical to a peak in the infrared would suggest a lanthanide-rich composition for the whole ejecta. Future polarimetric campaigns should prioritize observations in the first ∼48 h and in the 0.5-2 μ range, where polarization is strongest, but also explore shorter wavelengths/later times where no signal is expected from the kilonova and the interstellar polarization can be safely estimated

    Gamma-Ray Burst Afterglows as Probes of Environment and Blastwave Physics II: The Distribution of p and Structure of the Circumburst Medium

    Get PDF
    We constrain blastwave parameters and the circumburst media of a subsample of BeppoSAX Gamma-Ray Bursts. For this sample we derive the values of the injected electron energy distribution index, p, and the density structure index of the circumburst medium, k, from simultaneous spectral fits to their X-ray, optical and nIR afterglow data. The spectral fits have been done in count space and include the effects of metallicity, and are compared with the previously reported optical and X-ray temporal behaviour. Assuming the fireball model, we can find a mean value of p for the sample as a whole of 2.035. A statistical analysis Of the distribution demonstrates that the p values in this sample are inconsistent with a single universal value for p at the 3sigma level or greater. This approach provides us with a measured distribution of circumburst density structures rather than considering only the cases of k = 0 (homogeneous) and k = 2 (wind-like). We find five GRBs for which k can be well constrained, and in four of these cases the circumburst medium is clearly wind-like. The fifth source has a value of 0 less than or equal to k less than or equal to 1, consistent with a homogeneous circumburst medium

    Gas and dust properties in the afterglow spectra of GRB 050730

    Get PDF
    We present early WHT ISIS optical spectroscopy of the afterglow of gamma-ray burst GRB 050730. The spectrum shows a DLA system with the highest measured hydrogen column to date: N(HI) = 22.1 +/- 0.1 at the third-highest GRB redshift z = 3.968. Our analysis of the Swift XRT X-ray observations of the early afterglow show X-ray flares accompanied by decreasing X-ray absorption. From both the optical and the X-ray spectra we constrain the dust and gas properties of the host galaxy. We find the host to be a low metallicity galaxy, with low dust content. Much of the X-ray absorbing gas is situated close to the GRB, whilst the HI absorption causing the DLA is most likely located further out.Comment: 5 pages, 2 figures. Accepted for A&A Letter

    Seminal plasma and prostaglandin E2 up-regulate fibroblast growth factor 2 expression in endometrial adenocarcinoma cells via E-series prostanoid-2 receptor-mediated transactivation of the epidermal growth factor receptor and extracellular signal-regulated kinase pathway

    Get PDF
    We report a multiwavelength (X-ray, ultraviolet/optical/infrared, radio) analysis of the relativistic tidal disruption event candidate Sw J2058+05 from 3 months to 3 yr post-discovery in order to study its properties and compare its behavior with that of Sw J1644+57. Our main results are as follows. (1) The long-term X-ray light curve of Sw J2058+05 shows a remarkably similar trend to that of Sw J1644+57. After a prolonged power-law decay, the X-ray flux drops off rapidly by a factor of ≳160\gtrsim 160 within a span of Δ\Deltatt/tt ≤\le 0.95. Associating this sudden decline with the transition from super-Eddington to sub-Eddington accretion, we estimate the black hole mass to be in the range of 104−610^{4-6} M⊙_{\odot}. (2) We detect rapid (≲500\lesssim 500 s) X-ray variability before the dropoff, suggesting that, even at late times, the X-rays originate from close to the black hole (ruling out a forward-shock origin). (3) We confirm using HST and VLBA astrometry that the location of the source coincides with the galaxy's center to within ≲400\lesssim 400 pc (in projection). (4) We modeled Sw J2058+05's ultraviolet/optical/infrared spectral energy distribution with a single-temperature blackbody and find that while the radius remains more or less constant at a value of 63.4±4.563.4 \pm 4.5 AU (∼1015\sim 10^{15} cm) at all times during the outburst, the blackbody temperature drops significantly from ∼\sim 30,000 K at early times to a value of ∼\sim 15,000 K at late times (before the X-ray dropoff). Our results strengthen Sw J2058+05's interpretation as a tidal disruption event similar to Sw J1644+57.Comment: Replaced with the published version of the manuscrip

    Searching for ejected supernova companions in the era of precise proper motion and radial velocity measurements

    Get PDF
    The majority of massive stars are born in binaries, and most unbind upon the first supernova. With precise proper motion surveys such as Gaia, it is possible to trace back the motion of stars in the vicinity of young remnants to search for ejected companions. Establishing the fraction of remnants with an ejected companion, and the photometric and kinematic properties of these stars, offers unique insight into supernova progenitor systems. In this paper, we employ binary population synthesis to produce kinematic and photometric predictions for ejected secondary stars. We demonstrate that the unbound neutron star velocity distribution from supernovae in binaries closely traces the input kicks. Therefore, the observed distribution of neutron star velocities should be representative of their natal kicks. We evaluate the probability for any given filter, magnitude limit, minimum measurable proper motion (as a function of magnitude), temporal baseline, distance and extinction that an unbound companion can be associated with a remnant. We compare our predictions with results from previous companion searches, and demonstrate that the current sample of stars ejected by the supernova of their companion can be increased by a factor of 5-10 with Gaia data release 3. Further progress in this area is achievable by leveraging the absolute astrometric precision of Gaia, and by obtaining multiple epochs of deep, high resolution near-infrared imaging with the Hubble Space Telescope, JWST and next-generation wide-field near-infrared observatories such as Euclid or the Nancy Grace Roman Space Telescope.Comment: Accepted for publication in MNRAS. 19 pages, 17 figure

    Spectroscopy of the optical afterglow of GRB 021004: Origin of the blue-shifted hydrogen lines

    Get PDF
    We present spectra of the afterglow of GRB 021004 taken with WHT ISIS and VLT FORS1 at three epochs spanning 0.49–6.62 days after the burst. Alongside absorption lines from the host galaxy, we identify absorption in HI, SiIV and CIV with blueshifts of up to 2800 km s−1 from the explosion centre which we assume originates close to the progenitor. We investigate the origin of the outflowing material and evaluate various possible progenitor models, in particular a binary progenitor consisting of a Wolf-Rayet star and hydrogen-rich companion

    A comprehensive radio view of the extremely bright gamma-ray burst 130427A

    Get PDF
    GRB 130427A was extremely bright as a result of occurring at low redshift whilst the energetics were more typical of high-redshift gamma-ray bursts (GRBs). We collected well-sampled light curves at 1.4 and 4.8 GHz of GRB 130427A with the Westerbork Synthesis Radio Telescope (WSRT); and we obtained its most accurate position with the European Very Long Baseline Interferometry Network (EVN). Our flux density measurements are combined with all the data available at radio, optical and X-ray frequencies to perform broad-band modelling in the framework of a reverse–forward shock model and a two-component jet model, and we discuss the implications and limitations of both models. The low density inferred from the modelling implies that the GRB 130427A progenitor is either a very low metallicity Wolf–Rayet star, or a rapidly rotating, low-metallicity O star. We also find that the fraction of the energy in electrons is evolving over time, and that the fraction of electrons participating in a relativistic power-law energy distribution is less than 15 per cent. We observed intraday variability during the earliest WSRT observations, and the source sizes inferred from our modelling are consistent with this variability being due to interstellar scintillation effects. Finally, we present and discuss our limits on the linear and circular polarization, which are among the deepest limits of GRB radio polarization to date
    • …
    corecore