80 research outputs found
Resonant Raman of OH/OD vibrations and photoluminescence studies in LiTaO3 thin film
Resonant Raman spectra (RRS) of O-H and O-D vibration and libration modes,
their combinations and higher harmonics have been observed in LiTaO3
polycrystalline thin films. RRS peaks are superimposed on photoluminescence
(PL) spectrum. Monochromatic light from a xenon lamp is used as excitation
source. PL spectrum shows two broad peaks, first near the band gap in UV
(4.4-4.8eV) and another in the sub band gap region (< 4.0 eV). Band gap PL
along with RRS peaks are reported for the first time. Photoluminescence
excitation spectrum (PLE) shows a peak at 4.8 eV. Peak positions and full width
at half maximum (FWHM) of RRS peaks depend upon the excitation energy.
Dispersions of the fundamental and the third harmonic of the stretching mode of
O-H with excitation energy are about 800 cm-1/eV and 2000 cm-1/eV respectively.
This dispersion is much higher than reported in any other material.Comment: 20 page
Bump at the End of the Bridge: Review and Analysis of Rider Discomfort
Localized irregularities in the road profile are a well-known and persistent cause of rider discomfort when entering and exiting many bridges. This work addresses this so called “bump at the end of the bridge” problem first, through a review of relevant literature focusing on causes of the bump problem, mitigation techniques, retrofitting techniques, and special bump problems related to integral abutment bridges. Then, recognizing that approach slabs play a crucial role in the development of the bump, this problem is addressed through an investigation and comparison of approach slab designs and details utilized by various states. And, finally, the “bump at the end of the bridge” problem is addressed through dynamic analyses to ascertain the impact that various parameters of the bump geometry, road conditions, and vehicle speed have on rider discomfort. The results of the dynamic analyses indicate that the slope of the approach slab (i.e., the bump) and vehicle speed have the biggest impact on rider discomfort. Recommendations for future research are also noted
Experimental Simulation of Methane Hydrate Extraction at High Pressure Conditions: Influence of the Sediment Bed
Being a clean alternative to other fossil fuels, Methane Hydrate (MH) is currently considered as one of the most important potential sources for hydrocarbon fuels [1]. In addition, the high energy density of MH and its stability at higher temperatures as compared to LNG (Liquefied Natural Gas) makes MH a potential greener method for energy transportation. At the same time, the low thermodynamic stability of MH strongly questions the future exploitation of gas hydrate deposits, turning its extraction into a possible geohazard [2]. Fluctuations in pressure, temperature, salinity, degree of saturation or sediment bed properties may cause methane gas release from the water lattice. We experimentally study the influence of the sediment bed geometry during formation-dissociation of MH. For this purpose, MH is synthesized within regular substrates in a 93 cm3 high pressure vessel. The regular substrates are triangular and quadratic arrangements of identical glass spheres with a diameter of 2 and 5 mm, respectively. MH formation within regular substrate reduces the possibility of spontaneous nucleation to a unique geometrical configuration. This fact permits us to characterize the kinetics of MH formation-dissociation as a function of the sediment bed geometry. Preliminary experimental results reveal a strong dependence of MH formation on the geometry of the regular substrate. For instance, under the same pressure and temperature, the kinetics of MH production is found to change by a factor 3 solely depending on the substrate symmetry, i.e. triangular or quadratic
Experimental Simulation of Methane Hydrate Extraction at High Pressure Conditions: Influence of the Sediment Bed
Being a clean alternative to other fossil fuels, Methane Hydrate (MH) is currently considered as one of the most important potential sources for hydrocarbon fuels [1]. In addition, the high energy density of MH and its stability at higher temperatures as compared to LNG (Liquefied Natural Gas) makes MH a potential greener method for energy transportation. At the same time, the low thermodynamic stability of MH strongly questions the future exploitation of gas hydrate deposits, turning its extraction into a possible geohazard [2]. Fluctuations in pressure, temperature, salinity, degree of saturation or sediment bed properties may cause methane gas release from the water lattice. We experimentally study the influence of the sediment bed geometry during formation-dissociation of MH. For this purpose, MH is synthesized within regular substrates in a 93 cm3 high pressure vessel. The regular substrates are triangular and quadratic arrangements of identical glass spheres with a diameter of 2 and 5 mm, respectively. MH formation within regular substrate reduces the possibility of spontaneous nucleation to a unique geometrical configuration. This fact permits us to characterize the kinetics of MH formation-dissociation as a function of the sediment bed geometry. Preliminary experimental results reveal a strong dependence of MH formation on the geometry of the regular substrate. For instance, under the same pressure and temperature, the kinetics of MH production is found to change by a factor 3 solely depending on the substrate symmetry, i.e. triangular or quadratic
Theory of traveling filaments in bistable semiconductor structures
We present a generic nonlinear model for current filamentation in
semiconductor structures with S-shaped current-voltage characteristics. The
model accounts for Joule self-heating of a current density filament. It is
shown that the self-heating leads to a bifurcation from static to traveling
filament. Filaments start to travel when increase of the lattice temperature
has negative impact on the cathode-anode transport. Since the impact ionization
rate decreases with temperature, this occurs for a wide class of semiconductor
systems whose bistability is due to the avalanche impact ionization. We develop
an analytical theory of traveling filaments which reveals the mechanism of
filament motion, find the condition for bifurcation to traveling filament, and
determine the filament velocity.Comment: 13 pages, 5 figure
On the effect of multiple parallel nonlinear absorbers in palliation of torsional response of automotive drivetrain
Torsional vibrations transmitted from the engine to the drivetrain system induce a plethora of noise, vibration and harshness (NVH) concerns, such a transmission gear rattle and clutch in-cycle vibration, to name but a few. The main elements of these oscillations are variations in the inertial imbalance and the constituents of combustion power torque, collectively referred to as engine order vibration. To attenuate the effect of these transmitted vibrations and their oscillatory effects in the drive train system, a host of palliative measures are employed in practice, such as clutch pre-dampers, slipping discs, dual mass flywheel and others, all of which operate effectively over a narrow band of frequencies and have various unintended repercussions. These include increased powertrain inertia, installation package space and cost. This paper presents a numerical study of the use of multiple Nonlinear Energy Sinks (NES) as a means of attenuating the torsional oscillations for an extended frequency range and under transient vehicle manoeuvres. Frequency–Energy Plots (FEP) are used to obtain the nonlinear absorber parameters for multiple NES coupled in parallel to the clutch disc of a typical drivetrain configuration. The results obtained show significant reduction in the oscillations of the transmission input shaft, effective over a broad range of response frequencies. It is also noted that the targeted reduction of the acceleration amplitude of the input shaft requires significantly lower NES inertia, compared with the existing palliative measures
Targeted Energy Transfer and Modal Energy Redistribution in Automotive Drivetrains
The new generations of compact high output power-to-weight ratio internal combustion engines generate broadband torsional oscillations, transmitted to lightly damped drivetrain systems. A novel approach to mitigate these untoward vibrations can be the use of nonlinear absorbers. These act as Nonlinear Energy Sinks (NESs). The NES is coupled to the primary (drivetrain) structure, inducing passive irreversible targeted energy transfer (TET) from the drivetrain system to the NES. During this process, the vibration energy is directed from the lower-frequency modes of the structure to the higher ones. Thereafter, vibrations can be either dissipated through structural damping or consumed by the NES. This paper uses a lumped parameter model of an automotive driveline to simulate the effect of TET and the assumed modal energy redistribution. Significant redistribution of vibratory energy is observed through TET. Furthermore, the integrated optimization process highlights the most effective configuration and parametric evaluation for use of NES
Experimental testing of a large 9-story structure equipped with multiple nonlinear energy sinks subjected to an impulsive loading
ABSTRACT Building structures can be critically affected by impulsive loads such as blasts, collisions, gusts, and pulse dominated earthquakes. The addition of nonlinear energy sinks (NESs) in buildings has been proposed as a means to rapidly and passively dissipate the energy in a system exposed to this type of loading. This rapid dissipation occurs because the essential nonlinearity of the NES allows it to resonate with any mode of the structure and engage in targeted energy transfer, the nearly oneway transfer of energy to the NES where it is locally dissipated. Additionally, the NES couples the modes of the structure and facilitates the transfer of energy from the lower modes of the structure to the higher modes, where it can be dissipated at a reduced time scale. In this study the experimental performance of a system of multiple NESs in a large 9-story test structure is discussed. Two different types of NESs are used, each of which employ a different type of restoring force; one type of NES utilizes a smooth restoring force that is roughly cubic, while the other utilizes a linear restoring force coupled with one-sided vibro-impacts. To load this system, an impulse-like ground motion is applied via a large shake table. The results of this study show that the system of NESs greatly improves the performance of the structure across a wide range of impulse amplitudes by reducing and very rapidly attenuating its response
- …