43 research outputs found

    Heterochromatin protein 1 is recruited to various types of DNA damage

    Get PDF
    Heterochromatin protein 1 (HP1) family members are chromatin-associated proteins involved in transcription, replication, and chromatin organization. We show that HP1 isoforms HP1-α, HP1-ÎČ, and HP1-Îł are recruited to ultraviolet (UV)-induced DNA damage and double-strand breaks (DSBs) in human cells. This response to DNA damage requires the chromo shadow domain of HP1 and is independent of H3K9 trimethylation and proteins that detect UV damage and DSBs. Loss of HP1 results in high sensitivity to UV light and ionizing radiation in the nematode Caenorhabditis elegans, indicating that HP1 proteins are essential components of DNA damage response (DDR) systems. Analysis of single and double HP1 mutants in nematodes suggests that HP1 homologues have both unique and overlapping functions in the DDR. Our results show that HP1 proteins are important for DNA repair and may function to reorganize chromatin in response to damage

    Inclusive fitness theory and eusociality

    Get PDF

    Data from: Offspring size and reproductive allocation in harvester ants

    No full text
    A fundamental decision that an organism must make is how to allocate resources to offspring, both with respect to size and to number. The two major theoretical approaches to this problem, optimal offspring size and optimistic brood size models, make different predictions that may be reconciled by including how offspring fitness is related to size. We extended the reasoning of Trivers and Willard (1973) to derive a general model of how parents should allocate additional resources with respect to the number of males and females produced, and among individuals of each sex, based on the fitness payoffs of each. We then predicted how harvester ant colonies should invest additional resources, and tested three hypotheses derived from our model, using data from three years of food supplementation bracketed by six years without food addition. All major results were predicted by our model: Food supplementation increased the number of reproductives produced. Male, but not female, size increased with food addition; the greatest increases in male size occurred in colonies that made small females. We discuss how use of a fitness landscape improves quantitative predictions about allocation decisions. When parents can invest differentially in offspring of different types, the best strategy will depend on parental state as well as the effect of investment on offspring fitness

    Patriline shifting leads to apparent genetic caste determination in harvester ants

    No full text
    The harvester ant, Pogonomyrmex occidentalis, is characterized by high levels of intracolonial genetic diversity resulting from multiple mating by the queen. Within reproductively mature colonies, the relative frequency of different male genotypes (patrilines) is not stable. The difference between samples increases with time, nearing an asymptote after a year. Patriline distributions in gynes and workers display similar patterns of change. A consequence of changing patriline distributions is that workers and gynes appear to have different fathers. However, apparent genetic differences between castes are caused by changing paternity among all females. Temporal variation in the relative frequency of patrilines may be a consequence of processes that reflect sexual conflict, such as sperm clumping. Recent work documenting genotype differences between physical castes (workers and gynes; major and minor workers) in several species of ants has been interpreted as evidence of genetic caste determination. Reanalysis of these studies found little support for this hypothesis. Apparent caste determination may result from temporal variation in sperm use, rather than from fertilization bias among male ejaculates

    Body size and sperm quality in queen- and worker-produced ant males

    Get PDF
    Workers of many species of social Hymenoptera have functional ovaries and are capable of laying haploid, unfertilized eggs, at least in the absence of a queen. Except for honeybees, it remains largely unknown whether worker-produced males have the same quality as queen-produced males and whether workers benefit in direct fitness by producing their sons. Previous studies in the monogynous ant Temnothorax crassispinus revealed that a high proportion of males in natural and laboratory colonies are worker offspring. Here, we compare longevity, body size, sperm length and sperm viability between queen- and worker-produced males. We either split queenright colonies into queenright and queenless halves or removed the queen from a fraction of the queenright colonies and then examined the newly produced males. Male quality traits varied considerably among colonies but differed only slightly between queen- and worker-produced males. Worker-produced males outnumbered queen-produced males and also had a longer lifespan, but under certain rearing conditions sperm from queen-produced males had a higher viability
    corecore