228 research outputs found

    Electronic and magnetic properties of the ionic Hubbard model on the striped triangular lattice at 3/4 filling

    Get PDF
    We report a detailed study of a model Hamiltonian which exhibits a rich interplay of geometrical spin frustration, strong electronic correlations, and charge ordering. The character of the insulating phase depends on the magnitude of Delta/|t| and on the sign of t. We find a Mott insulator for Delta >> U >> |t|; a charge transfer insulator for U >> \Delta >> |t|; and a correlated covalent insulator for U >> \Delta ~ |t|. The charge transfer insulating state is investigated using a strong coupling expansion. The frustration of the triangular lattice can lead to antiferromagnetism or ferromagnetism depending on the sign of the hopping matrix element, t. We identify the "ring" exchange process around a triangular plaquette which determines the sign of the magnetic interactions. Exact diagonalization calculations are performed on the model for a wide range of parameters and compared to the strong coupling expansion. The regime U >> \Delta ~ |t| and t<0 is relevant to Na05CoO2. The calculated optical conductivity and the spectral density are discussed in the light of recent experiments on Na05CoO2.Comment: 15 pages, 15 figure

    Crop Nitrogen and Phosphorus Utilization following Application of Slurry from Swine Fed Traditional or Low Phytate Corn Diets

    Get PDF
    Field application of swine (Sus scrofa) slurry provides essential nutrients for crop production. The N to P ratio for slurry is lower than needed by most crops resulting in P accumulation when applied at N rates required for crop growth. Low phytate corn (Zea mays L.) (LPC) contains similar amounts of total P but less phytate P than traditional corn (TC) resulting in improved P bioavailability and reduced P excretion by monogastric animals. While manure from swine-fed LPC diets has a higher N to P ratio than that from TC diets, field studies comparing crop utilization of nutrients from LPC manure have not been conducted. A field study was conducted to compare N and P utilization by no-tillage rainfed sorghum [Sorghum bicolor (L.) Moench.] receiving three annual surface applications of nutrients (inorganic fertilizer, LPC slurry, and TC slurry) and by irrigated corn receiving one incorporated application of nutrients. Sorghum grain and total dry matter N utilization exhibited a year by treatment interaction but total dry matter N utilization was similar for both manure types in all years (61.2 ± 2.6% for TC and 53.8 ± 2.6% for LPC). Grain P utilization was similar for inorganic fertilizer and manure but differed among years (44.4 ± 7.0% in 1999, 25.1 ± 1.4% in 2000, and 57.0 ± 2.2% in 2001). Corn grain N and P utilization did not diff er among nutrient sources in the year of application (50.7 ± 2.4% for N and 40.4 ± 3.0 for P) and increased little in the year following application (62.2 ± 3.0% for N and 50.2 ± 4.5% for P). Crop N and P utilization from LPC manure and TC manure was similar and nutrient guidelines developed for TC swine slurry should also apply for LPC slurry

    Effects of Nitrogen and Phosphorus Fertilizer and Topsoil Amendment on Native Plant Cover in Roadside Revegetation Projects

    Get PDF
    Establishing vegetation on roadsides following construction can be challenging, especially for relatively slow growing native species. Topsoil is generally removed during construction, and the surface soil following construction (“cut-slope soils”) is often compacted and low in nutrients, providing poor growing conditions for vegetation. Nebraska Department of Transportation (NDOT) protocols have historically called for nitrogen (N) and phosphorus (P) fertilization when planting roadside vegetation following construction, but these recommendations were developed for cool-season grass plantings and most current plantings use slower-establishing, native warmseason grasses that may benefit less than expected from current planting protocols. We evaluated the effects of nitrogen and phosphorus fertilization, and also topsoil amendment, on the foliar cover of seeded and non-seeded species planted into two postconstruction roadside sites in eastern Nebraska. We also examined soil movement to determine how planting protocols and plant growth may affect erosion potential. Three years after planting, we found no consistent effects of N or P fertilization on foliar cover. Plots receiving topsoil amendment had 14% greater cover of warm-season grasses, 10% greater total foliar cover, and 4–13% lower bare ground (depending on site) than plots without topsoil. None of the treatments consistently affected soil movement. We recommend that NDOT change their protocols to remove N and P fertilization and focus on stockpiling and spreading topsoil following construction

    Corn Cob Residue Carbon and Nutrient Dynamics during Decomposition

    Get PDF
    The cob fraction of corn (Zea mays L.) residue has characteristics that reduce concerns associated with residue removal making it a potential biofuel feedstock. The contribution the cob makes to soil C and nutrient dynamics is unknown. A litterbag study was conducted in no-tillage plots under irrigated and rain fed conditions in eastern Nebraska. Litterbags containing cobs were placed in corn rows on the soil surface or vertically in the 0- to 10-cm soil depth following grain harvest and collected aft er 63, 122, 183, 246, 304, and 370 d. Samples were analyzed for dry matter, C, N, P, K, S, Ca, Mg, Fe, Mn, Cu, and Zn. Dry matter loss was greater for buried (59% loss rain fed site vs. 64% irrigated site) than surface cobs (49% loss rain fed site vs. 42% irrigated site). Cob N, P, S, content did not change over the duration of the study and these nutrients would play a limited role in nutrition for the subsequent crop. Cob K content declined exponentially over the study suggesting that cob K would be available to the subsequent crop. Cob Ca, Mg, Zn, Fe, Mn, and Cu content increased during the study representing immobilization. With the exception of K, nutrients contained in the cob are immobilized the year following harvest and play a minor role in mineral nutrition of the subsequent crop. As cellulosic conversion technology becomes available cobs represent a feedstock that can be harvested with minor effect on crop nutrient availability

    STATUS OF SOIL ELECTRICAL CONDUCTIVITY STUDIES BY CENTRAL STATE RESEARCHERS

    Get PDF
    Practical tools are needed to identify and advance sustainable management practices to optimize economic return, conserve soil, and minimize negative off-site environmental effects. The objective of this article is to review current research in non-saline soils of the central U.S. to consider bulk soil electrical conductivity (ECa) as an assessment tool for: (1) tracking N dynamics, (2) identifying management zones, (3) monitoring soil quality trends, and (4) designing and evaluating field-scale experiments. The interpretation and utility of ECa are highly location and soil specific; soil properties contributing to measured ECa must be clearly understood. In soils where ECa is driven by NO3-N, ECa has been used to track spatial and temporal variations in crop-available N (manure, compost, commercial fertilizer, and cover crop treatments) and rapidly assess N mineralization early in the growing season to calculate fertilizer rates for site-specific management (SSM). Selection of appropriate ECa sensors (direct contact, electromagnetic induction, or time domain reflectometry) may improve sensitivity to N fluctuations at specific soil depths. In a dryland cropping system where clay content dominates measured ECa, ECa -based management zones delineated soil productivity characteristics and crop yields. These results provided a framework effective for SSM, monitoring management-induced trends in soil quality, and appraising and statistically evaluating field-scale experiments. Use of ECa may foster a large-scale systems approach to research that encourages farmer involvement. Additional research is needed to investigate the interactive effects of soil, weather, and management on ECa as an assessment tool, and the geographic extent to which specific applications of this technology can be applied

    Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn

    Get PDF
    Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long-term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emissions, and global warming potential (GWP) in irrigated systems, however, remain relatively unknown. Here, residue and tillage management effects were quantified by measuring soil nitrous oxide (N2O) and methane (CH4) fluxes and SOC changes (ΔSOC) at a long-term, irrigated continuous corn (Zea mays L.) system in eastern Nebraska, USA. Management treatments began in 2002, and measured treatments included no or high stover removal (0 or 6.8 Mg DM ha-1 yr-1, respectively) under no-till (NT) or conventional disk tillage (CT) with full irrigation (n = 4). Soil N2O and CH4 fluxes were measured for five crop-years (2011 to 2015), and ΔSOC was determined on an equivalent-mass basis to ~30 cm soil depth. Both area- and yield-scaled soil N2O emissions were greater with stover retention compared to removal and for CT compared to NT, with no interaction between stover and tillage practices. Methane comprise

    Soil quality assessment of an agroforestry system following long-term management in the Ozark Highlands

    Get PDF
    The Soil Management Assessment Framework (SMAF) is a quantitative soil quality (SQ) evaluation tool that is widely applied to assess soil response to specific agricultural management practices over time. Considering the reported SQ benefits of agroforestry (AF) systems and the potential usefulness of SMAF, the objective of this study was to evaluate the effects of tree species (pecan [Carya illinoinensis (Wangenh.) K. Koch] and northern red oak [Quercus rubra L.]), soil fertility source (poultry litter [PL] and inorganic N fertilizer [control]), and soil depth (0–15 and 15–30 cm) on SMAF-derived SQ indices after 17 yr of management at an AF site in northwest Arkansas. Averaged across soil depth, soil organic C scores under red oak with PL application had a lower score (0.48) than red oak fertilized with inorganic N (0.60) and pecan receiving long-term PL applications (0.60), which did not differ from pecan with inorganic N fertilizer application (0.51). Averaged across soil depth, the soil quality index (SQI) for pecan receiving PL applications was 1.1 times greater than that under red oak receiving PL and soils under pecan receiving inorganic N fertilizer. Soil quality assessments use in AF are novel, as SMAF has not been used to identify soil health in these systems, although specific tree crop codes need to be developed in SMAF. Results of this study demonstrate that soils planted under various tree species respond dissimilarly to fertilizer sources and that management may improve overall SQ

    Soil quality indices based on long-term conservation cropping systems management

    Get PDF
    The Soil Management Assessment Framework (SMAF) may provide insight into how conservation practices affect soil quality (SQ) regionally. Therefore, we aimed to quantify SQ in a long-term (15-yr) crop rotation and bio-covers experiment under notillage using SMAF. Main effects were cropping rotations of soybean [Glycine max (L.) Merr.], corn (Zea mays L.), and cotton (Gossypium hirsutum L.). Split-block biocover treatments consisted of winter wheat (Triticum aestivum L.), Austrian winter pea (Pisum sativum L. sativum var. arvense), hairy vetch (Vicia villosa Roth), poultry litter, and fallow (control). Seven SQ indicators—soil pH, total organic carbon (TOC), bulk density (BD), soil extractable P and K, electrical conductivity (EC), and sodium adsorption ration (SAR)—were scored using SMAF algorithms, and investigated individually and as an overall soil quality index (SQI). Simple linear regressions were performed between SQI and crop yields. Differences (

    Twelve Years of Stover Removal Increases Soil Erosion Potential without Impacting Yield

    Get PDF
    Corn (Zea mays L.) stover (non-grain aboveground biomass) in the US Corn Belt is used increasingly for livestock grazing and co-feed and for cellulosic bioenergy production. Continuous stover removal, however, could alter long-term agricultural productivity by affecting soil organic C (SOC) and soil physical properties, indicators of soil fertility and erosion potential. In this study, we showed that 12 consecutive yr of 55% stover removal did not affect mean grain yields at any N fertilizer rate (4.5, 6.3, and 6.0 Mg ha−1 for 60, 120, and 180 kg N ha−1 yr−1, respectively) in a marginally productive, rainfed continuous corn system under no-till (NT). Although SOC increased in the top 30 cm of all soils since 1998 (0.54–0.79 Mg C ha−1 yr−1), stover removal tended to limit SOC gains compared with no removal. Near-surface soils (0–5-cm depth) were more sensitive to stover removal and showed a 41% decrease in particulate organic matter stocks, smaller mean weight diameter of dry soil aggregates, and lower abundance of water-stable soil aggregates compared with soils with no stover removal. Increasing N fertilizer rate mitigated losses in total water-stable aggregates in near-surface soils related to stover removal. Collectively, however, our results indicated soil structure losses in surface soils due to lower C inputs. Despite no effect on crop yields and overall SOC gains with time using NT management, annually removing stover for 12 yr resulted in a higher risk of wind and water erosion at this NT continuous corn site in the western Corn Belt

    Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent

    Get PDF
    In this work, we present the first observations of stable water isotopologue ratios in cloud droplets of different sizes collected simultaneously. We address the question whether the isotope ratio of droplets in a liquid cloud varies as a function of droplet size. Samples were collected from a ground intercepted cloud (= fog) during the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010) using a three-stage Caltech Active Strand Cloud water Collector (CASCC). An instrument test revealed that no artificial isotopic fractionation occurs during sample collection with the CASCC. Furthermore, we could experimentally confirm the hypothesis that the ÎŽ values of cloud droplets of the relevant droplet sizes (ÎŒm-range) were not significantly different and thus can be assumed to be in isotopic equilibrium immediately with the surrounding water vapor. However, during the dissolution period of the cloud, when the supersaturation inside the cloud decreased and the cloud began to clear, differences in isotope ratios of the different droplet sizes tended to be larger. This is likely to result from the cloud's heterogeneity, implying that larger and smaller cloud droplets have been collected at different moments in time, delivering isotope ratios from different collection times
    • 

    corecore