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We report a detailed study of a model Hamiltonian which exhibits a rich interplay of geometrical spin
frustration, strong electronic correlations, and charge ordering. The character of the insulating phase depends
on the magnitude of the onsite energy � / �t� and on the sign of the hopping amplitude t. We find a Mott
insulator for ��U� �t�; a charge-transfer insulator for U��� �t�; and a correlated covalent insulator for
U����t�, with U the onsite Coulomb repulsion energy. The charge-transfer insulating state is investigated
using a strong-coupling expansion. The frustration of the triangular lattice can lead to antiferromagnetism or
ferromagnetism depending on the sign of t. We identify the “ring” exchange process around a triangular
plaquette which determines the sign of the magnetic interactions. Exact diagonalization calculations are per-
formed on the model for a wide range of parameters and compared to the strong-coupling expansion. The
regime U����t� and t�0 is relevant to Na0.5CoO2. The calculated optical conductivity and the spectral
density are discussed in the light of recent experiments on Na0.5CoO2.
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I. INTRODUCTION

Many strongly correlated electron materials exhibit a
subtle competition between different magnetic and charge
ordered states, and between metallic, insulating, and super-
conducting phases. Widely studied �and poorly understood�
materials include cuprate superconductors,1 organic charge-
transfer salts,2 manganites with colossal magnetoresistance,3

heavy fermion compounds,4 and the iron pnicitide
superconductors.5 A fundamental theoretical challenge is ex-
plaining the hierarchy of energy scales and competing phases
in these materials. The energy scales �such as the bandwidth
and Coulomb repulsion� associated with the relevant elec-
tronic orbitals �and microscopic Hamiltonians such as Hub-
bard models� are typically on the order of eV. In contrast, the
energy scales associated with the temperature and magnetic
field dependences of transport properties and energy differ-
ences between competing phases are often several orders of
magnitude smaller. Frustration of spin or charge ordering by
competing interactions due to the geometry of the crystal
lattice can enhance these effects. In addition, it is not clear
what physical changes are produced by chemical doping. For
example, does adding charge carriers just change the band
filling or are there significant effects due to the associated
disorder and changes in the electronic structure?

Here we report a detailed study of a specific strongly cor-
related electron model, the ionic Hubbard model on the tri-
angular lattice at 3/4 filling with a stripe potential. The model
illustrates how the interplay of geometric frustration and
strong correlations lead to competition between different
magnetic orders, charge ordering, metallic, and insulating be-
haviors. One concrete realization of the model is that it may
be the simplest many-body Hamiltonian that can describe
Na0.5CoO2.6–8 Elsewhere we have reviewed experimental re-
sults on this material and described recent theoretical at-
tempts to describe its unusual properties.8 When the filling x

in NaxCoO2 is close to other commensurate values, such as
1/3, 2/3, or 3/4, the system is still described by an ionic
Hubbard model but the on-site potential has a different form
and commensurability, depending on the ordering arrange-
ment of the sodium ions.6 At x=4 /5, such a model9 has been
suggested to be relevant to the ordering observed in
Na0.8CoO2. At incommensurate values of x one expects
phase coexistence of multiple Na-ordering phases.10

The rest of the paper is organized as follows: in Sec. II we
introduce an ionic Hubbard model on a triangular lattice in-
cluding a discussion of its phase diagram. In Sec. III we
analyze the model’s ground-state properties using the Lanc-
zos exact diagonalization technique on finite-size clusters.
Dynamical properties such as the spectral density and optical
conductivity are discussed in Sec. IV. Finally, a summary of
the main results and their relevance to Na0.5CoO2 is given in
Sec. V. We have also studied the same model using a
complementary method, mean-field slave bosons.8 At appro-
priate places in the paper we compare and contrast the re-
sults.

II. IONIC HUBBARD MODEL ON A TRIANGULAR
LATTICE

The Hamiltonian of the ionic Hubbard model is

H = − t �
�ij��

�ci�
+ cj� + cj�

+ ci�� + U�
i

ni↑ni↓ + �
i�

�ini�, �1�

where ci�
+ creates an electron with spin � at site i, t is the

hopping amplitude between neighboring sites, and U is the
effective on-site Coulomb repulsion energy between two
electrons. We set �i=� /2 for the A sites and �i=−� /2 for B
sites �cf. Figure 1�. The A sites form rows which alternate
with the B sites of the triangular lattice. By a particle-hole
transformation: ci�

+ →hi� model �1� becomes a 1/4-filled
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�with holes� ionic Hubbard model with the sign transforma-
tion: t→−t and �→−�.

In what follows we will discuss the charge gap which is
defined for the model on a finite lattice with N electrons and
2N /3 lattice sites by

�c � E0�N + 1� + E0�N − 1� − 2E0�N� , �2�

where E0�M� is the ground-state energy of the system with
M electrons.

A. Previous theories of the ionic Hubbard model

The ionic Hubbard model �1� on the striped triangular
lattice of Fig. 1 considered here contains geometrical frustra-
tion. This is in contrast to most previous work which has
focused on bipartite, i.e., unfrustrated, lattices with different
site energies, �, on each of the bipartite sublattices and at
half-filling. Some of the interest in this model can be appre-
ciated from the half-filled atomic limit �t=0�. For U�� the
charge gap for the addition of particles defined in Eq. �2�,
�c=U−�; thus, the system is a Mott insulator. But, for
U��, �c=�−U; and the system is a band insulator. At the
point U=� this gap vanishes. Therefore a key question is
what happens at the band to Mott insulator transition away
from the atomic limit; in particular what happens to the gap-
less point—does it expand give a metallic phase? Further
impetus comes from the proposals that the ionic Hubbard
model is important for understanding ferroelectric
perovskites,11 organic charge-transfer salts,12,13 transition-
metal oxide heterostructures,14 and nonlinear electronic po-
larizability in transition-metal oxides,15 and, as discussed be-
low the rich electronic phases observed in AxCoO2 	A=Na,
K, Rb
.8

The most studied case is the half-filled one-dimensional
�1D� chain with different site energies for odd and even num-
bered sites. This model shows three distinct insulating
phases: a band insulator, a �ferroelectric� bond order wave
insulator, and a Mott insulator.16 Metallic behavior appears to
be limited to the point in the phase diagram where band
insulator gives way to the bond order wave insulator.16 Con-
tinuum limit bosonization calculations suggest that adding a
next-nearest-neighbor hopping, t�, �which is equivalent to
studying the zigzag chain� induces a large metallic region in

the phase diagram,17 suggesting that even in one-dimension
frustration already plays an important role in the ionic Hub-
bard model.

The infinite-dimensional ionic Hubbard model has been
studied using dynamical mean-field theory �DMFT�,18,19

which treats the on-site quantum dynamics exactly but ig-
nores spatial correlations such as those associated with anti-
ferromagnetic exchange. These papers studied the bipartite
Bethe lattice and found that a metallic phase separates the
band insulating phase from the Mott insulating phases, in, at
least, some parts of the phase diagram.

In two dimensions most previous work has focused on the
half-filled square lattice with site energies alternating in a
checkerboard pattern. This model has been studied using
both cluster DMFT20 and determinant quantum Monte Carlo
�DQMC�.21,22 These studies all suggested that a phase with
nonzero spectral weight at the Fermi energy exists between
the band insulator and Mott insulator phases, at least in some
of the phase diagram. However, there has been some debate
over whether this phase is metallic21,22 or bond ordered.20

There has been far less work on the ionic Hubbard model
away from half-filling. However, Penc et al.23 studied the
quarter-filled ionic Hubbard model on the zigzag ladder and
found a competition between ferromagnetism and a para-
magnetic phase with strong antiferromagnetic correlations.
Bouadim et al.22 studied the ionic Hubbard model on a
square lattice with a checkerboard potential across all pos-
sible fillings with DQMC. The most interesting features they
found, away from half filling, were Mott insulation at quarter
and three quarters filling �which are related by the particle-
hole symmetry of this model�. Bouadim et al. did not find
any evidence of magnetic order in this phase. However, as
the magnetic interactions are O�t4 /U�2� the absence of mag-
netic order may be due to nonzero value of the temperatures
they studied.

As well as bipartite arrangements of the different site en-
ergies there has also been considerable interest in random
arrangements of site energies. Laad et al.24 studied a system
with a Gaussian density of states and a bimodal distribution
of site energies in infinite dimensions for various impurity
concentrations, n, and fillings, 1−	. They found insulating
states for 	=1−n and sufficiently large � and U. Byczuk et
al. have used DMFT to study the �frustrated� fcc26 and �bi-
partite� Bethe25 lattices in infinite dimensions with a bimodal
distribution of site energies and half the sites taking each
value of the site energy. At one-quarter filling they found that
metal-insulator transitions occur on both lattices when both
U and � are sufficiently large. They also noted that DMFT
does not capture some of the possible effects of the disorder,
such as Anderson insulating phases. In two dimensions Paris
et al.21 used DQMC to study the square lattice at a range of
fillings with 1/8 of the sites randomly chosen to have a dif-
ferent site energy than the rest of the lattice. They found that
this model displayed Mott insulating, band insulating, Ander-
son insulating, and metallic phases.

Marianetti and Kotliar27 simplified our suggestion6 of that
Eq. �1� is the appropriate effective low Hamiltonian for
NaxCoO2 by further assuming that Na-ordering is of second-
ary importance and hence treated the potential due to the Na
ions as random. They then used density functional theory to

t>0
B

B

A

A

B

JJJJ
J

t<0(b)(a)

FIG. 1. �Color online� Spin and charge order in the 3/4-filled
Ionic Hubbard model �1� on a triangular lattice in the limit
U��� �t�. A and B denote the inequivalent sites of the lattice.
C-type antiferromagnetism �left� is found for t�0 in contrast to
G-type antiferromagnetism �right� for t�0. The exchange cou-
plings J and J� are defined in Eq. �7� for the appropriate t−J model
in Eq. �6�. A ferromagnetic exchange coupling, J, between neigh-
boring A sites occurs for the parameter range: 0�5t����2U.
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show that the distribution of Co site energies is bimodal and
to parameterize the Hamiltonain �1� for x=0.3 and 0.7. Fi-
nally they calculated the high-temperature �T
100 K� sus-
ceptibility for these dopings and found them to be in quali-
tative agreement with experiment. We deal here with the case
x=0.5 for which Na-ordering of the stripe-type �cf. Fig. 1�
has been observed in experiments.28,29

B. Noninteracting model (U=0)

For U=0 model �1� can be diagonalized straightforwardly
leading to two bands, denoted �. We introduce creation and
destruction operators

ck��
† = �k�cAk�

+ + AkcBk�
+ � , �3�

where cAk�
+ and cBk�

+ act on the Bloch states associated with
the A and B sublattices, respectively, and

Ak� =
�/2 � ��2/4 + 	4t cos�kx/2�cos�ky

�3/2�
2

4t cos�kx/2�cos�ky
�3/2�

, �4�

with the normalization constant �k�=1 /�1+ �Ak��2. The en-
ergy dispersion of the two bands is

���k� = − 2t cos kx � ��2/4 + 	4t cos�kx/2�cos�ky
�3/2�
2,

�5�

with kx and ky defined in the reduced �1��3� Brillouin zone
with lattice-parameter a=1. At 3/4-filling and for any �,
there is always at least one band crossing the Fermi energy
and so the system is metallic. The + band is half-filled and
the − band filled for t�0 and ��0, whereas for t�0 this
only occurs for ��0.64�t�. For �=0 there is only one band,
which has a width of W=9�t�.

C. Phase diagram

The ionic Hubbard model �1� on a triangular lattice con-
tains a rich phase diagram resulting from the interplay be-
tween geometrical frustration, strong Coulomb repulsion,
and charge ordering phenomena. A schematic phase diagram
can be constructed by first considering some simple limits:

�i� t=0 �atomic limit�: all A sites are singly occupied
while B sites are doubly occupied. The system is insulating
with a charge gap: �c=min�� ,U�. For ��U it is a Mott
insulator �MI� with �c=U, whereas for ��U it is a charge-
transfer insulator �CTI� with �c=�.

�ii� U=0 �noninteracting limit�: as discussed above the
model is always metallic regardless the value of �.

�iii� �=0: for any U the model reduces to the regular
Hubbard model on the isotropic triangular lattice at 3/4-
filling. For large U / �t�, it is equivalent to the t−J model on
the triangular lattice. Dynamical mean-field theory
calculations6,30 give a ground state that is metallic. DMFT6

calculations on the Hubbard model for large U and varia-
tional Monte Carlo calculations on the t−J model give this
metallic ground state as paramagnetic �ferromagnetic� for
t�0�t�0�.31

�iv� �=�: as the B sites can be completely projected out
from the Hilbert space, the model is mapped onto decoupled

half-filled Hubbard chains. Hence, the system is �Mott� insu-
lating for any nonzero positive U; i.e., there is a charge gap
�c�0, and there are antiferromagnetic correlations �with
power-law decay� and no spin gap.

�v� U��� �t��0: for finite but small t, virtual hopping
processes lead to effective magnetic exchange couplings be-
tween the A sites. The effective low-energy t−J−Jdiag−J�

Hamiltonian for the holes is

H = t�
ij�

P�hi�
+ hj� + hj�

+ hi��P + J�
�ij

�Si · Sj −
ninj

4
�

+ Jdiag�
�ij�

�Si · Sj −
ninj

4
� + J��

	ij

�Si · Sj −

ninj

4
�

− �
i�

�ihi�
+ hi�, �6�

where � . . .  and 	 . . . 
 denote sums over intra-A-chain,
inter-A-chain sites, respectively. The sum over � . . . � is be-
tween an A and nearest-neighbor B sites. The projector
P=�i	1−ni↑ni↓
 forbids double occupation of holes on any
lattice site. The dynamics of the electron-doped system rel-
evant to NaxCoO2 with electron occupation 1+x is related to
the hole-doped system, with filling 1−x, through the replace-
ment: t→−t and �i→−�i leaving the exchange parameters
unchanged.

The exchange couplings J, J�, and Jdiag can be obtained
through a strong-coupling expansion using Raleygh-
Schrödinger perturbation theory on the hopping term around
the configuration in which all B sites are doubly occupied
and A sites singly occupied �see Appendix A�. This leads to
an effective exchange coupling between electrons in A sites
in the horizontal direction

J =
4t2

U
−

8t3

�2 −
16t3

�U
+ O�t4� , �7�

and in the perpendicular direction

J� =
16t4

�2 � 1

U
+

1

2� + U
+

1

2�
� + O�t5� . �8�

The exchange coupling Jdiag between A and B sites is

Jdiag = 2t2� 1

U + �
+

1

U − �
� + O�t3� , �9�

which is blocked if the B sites are doubly occupied but re-
covers the correct 4t2 /U exchange interaction as �→0.

The second and third terms in J are antiferromagnetic
�AFM� for t�0 and ferromagnetic �FM� for t�0. Higher-
order contributions to J are AF and can be found in Appendix
A.

A schematic phase diagram of the 3/4-filled ionic Hub-
bard model on a triangular lattice �1� is shown in Fig. 2. The
transition lines are extracted from the limits �i�-�v� discussed
above and exact diagonalization calculations for intermediate
parameter regimes. Apart from the Mott insulator and
charge-transfer insulator, our numerical analysis suggests the
presence of a covalent insulator �CI� in the range ��O��t��
and U� �t�. Depending on the sign of t, different spin ar-
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rangements occur as shown in Fig. 1. The condition J=0
separates AF from the FM region which occurs in the param-
eter range: 5t����2U and is plotted in Fig. 2.

D. Model on two- and four-site clusters

In this section we explore the nature of the ground state of
the model �1� on two- and four-site clusters. The two-site
cluster incorporates charge ordering phenomena in the pres-
ence of on-site Coulomb interaction. The four-site toy model
also contains geometrical frustration effects present in the
full model �1�. Ground-state properties of the clusters are
discussed in terms of valence-bond �VB� theory32 when ap-
propriate. For t�0 and U� �t� the ground-state wave func-
tion is accurately described by the resonance between pos-
sible valence bonds. Our analysis indicates that the charge
gap of the clusters is enhanced with � due to the differences
between the two-electron and three-electron bonds between
the different A and B sites.

1. Two-site cluster

We first consider three electrons in two inequivalent sites
�one A, the other B� separated by an energy �. The energy
levels for this cluster are sketched in Fig. 3. The Hamiltonian
is

H = − t�cA�
+ cB� + cB�

+ cA�� + U�nA↑nA↓ + nB↑nB↓�

+ �/2�nA − nB� . �10�

For U=0, the charge gap of the cluster is �c=0 for any �
due to the degeneracy of the ground state. In order to evalu-
ate the dependence of the gap on � we first obtain the
ground-state energies with N=2, 3, and 4 electrons

E0�2� = − 2t2� 1

U + �
+

1

U − �
�, U � �t�

E0�3� = U −
��2 + 4t2

2

E0�4� = 2U . �11�

In the limit �→0 and U� �t�, the charge gap of the cluster is

�c � 2�t� + �2� 1

4t
−

4t2

U3� −
4t2

U
. �12�

The first contribution to �c is present even for �=0 as ex-
pected from the bonding-antibonding splitting of the cluster
and will go to zero in the infinite system. The term propor-
tional to �2 comes from the different dependances of E�3�
and E�2� on �: E�2� has a weaker dependence than E�3�.
This is due to the different nature of the two-electron and the
three-electron bond. The former is accurately described by a
correlated VB between an electron on an A site and an elec-
tron on a B site whereas the latter is described by a single
hole in an antibonding “molecular” orbital. The two-electron
and three-electron bond energies �the energy needed to break
a bond between inequivalent sites� are � /2−��2+4t2 /2 and
E0�2�, respectively. Hence, the two-electron bond becomes
weaker with � while the three-electron bond is strengthened
with �. This is known from quantum chemistry32 and can be
understood as being a consequence of the presence or ab-
sence of Coulomb repulsion between electrons.

2. Four-site cluster

We consider the four-site cluster �Fig. 3� with two A sites
shifted by +� /2 and two B sites shifted by −� /2. The cluster
shown contains N=6 electrons �corresponding to 3/4-filling�.
The model Hamiltonian in this case is

H = − t �
i�A,j�B

�ci�
+ cj� + cj�

+ ci�� − t� �
i,j�A

�ci�
+ cj� + cj�

+ ci��

+ U�
i

ni↑ni↓ + �/2 �
i�A,j�B

�ni − nj� . �13�

� �

9|t|

4|t|
Metal

CI

CTI

MI

U= ∆

∆

U

t<0

O(|t|)0
�

5|t|

U

∆

9|t|

4|t|
Metal

t>0

C−AFM

FM

CTI MI

U= ∆

0(b)(a)

FIG. 2. �Color online� Schematic phase diagram of the Ionic
Hubbard model 1 on a striped triangular lattice at 3/4-filling. The
transition lines are based on the lowest-order corrections in a
strong-coupling analysis and on Lanczos diagonalization calcula-
tions. The t�0 case is relevant to the Na0.5CoO2 insulator. Insulat-
ing phases at strong-coupling, U�W, of different types are found
ranging from a charge-transfer insulator �CTI�, a Mott Insulator
�MI�, and a covalent insulator �CI�. The bandwidth of the model for
�=0 �the isotropic triangular lattice�, W=9�t�, is effectively reduced
to 4�t� corresponding to one-dimensional �1D� chains as � in-
creases. At exactly �=�, the system is insulating for any nonzero U
as expected for a half-filled Hubbard chain due to Umklapp pro-
cesses. The blue line is an estimate of the critical U for the metal-
to-insulator transition which follows the effective bandwidth depen-
dence with �. Insulating phases for t�0 display G-type
antiferromagnetic �AFM� �see Fig. 1� correlations whereas a
C-AFM region �see Fig. 1� for t�0 is obtained from the condition,
J�0, to Eq. �7� which we assume valid for U
9�t�. The marked
�=0 axis for t�0 and above U�5�t� indicates the occurrence of
ferromagnetism as predicted by DMFT of the Hubbard model on an
isotropic triangular lattice. �Ref. 6�

U
∆

B

A

t
B

A

B

t

t’

(b)(a)

FIG. 3. Ionic Hubbard model on two- and four-site clusters. The
energy-level diagram for three electrons on two sites �left� and the
four-site cluster with six electrons �right�.
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We first discuss the �→0 limit. The exact ground-state
energies of the fully frustrated t�= t cluster for N=5, 6, and 7
electrons are plotted in Fig. 4 for U=100�t�. Consistent with
the results for the two-site cluster we find that, E0�5�, has the
weakest dependence on � of all the ground-state energies.
The ground-state wave function for N=6 can be well de-
scribed in terms of resonating valence bonds as shown in the
Appendix B. In contrast, the wave function for N=7 consists
of a single-hole hopping around the cluster and so contains
no Coulomb interaction effects. In this case a “molecular”
orbital with a single hole describes the cluster and its energy,
E0�7�, has the strongest dependence with �. The different
behavior of E0�N�, E0�N+1�, and E0�N−1� is responsible for
the increase in the charge gap with � as shown in Fig. 5.
This behavior is in contrast to the U=0 case plotted in the
figure.

Effects of frustration. We now discuss the four-site cluster
with t�=0. In this case analytical formulas may be obtained
for U=�. The sign of the hopping is irrelevant here in con-
trast to the t�� t case. The ground-state energies are

E0�6� = − �8t2 + �2

E0�7� = − t −
�4t2 + �2

2
. �14�

In the limit �→0, we find E0�7��−2t− �2

4�t� and
E0�6��−2�2t−

�2�2

8�t� . Thus, E0�6� has a weaker dependence

on � than E0�7�, similarly to the fully frustrated t�= t cluster.
Our small cluster analysis indicates that the charge gap,

�c, increases with � due to the different natures of the two-
electron and three-electron bonds formed between inequiva-
lent sites. This result is not affected by the presence of frus-
tration in the cluster at the qualitative level. However,
geometrical frustration �t� t�� leads to qualitatively different
magnetic properties for different signs of t in contrast to the
unfrustrated �t�=0� case.

III. GROUND-STATE PROPERTIES OF THE IONIC
HUBBARD MODEL ON A TRIANGULAR LATTICE

Intermediate parameter regimes are explored based on
Lanczos diagonalization on finite clusters with Ns=12, 16,
and 18 sites and periodic boundary conditions. Different
cluster shapes have been benchmarked against the exact so-
lution of the noninteracting model �1� and are shown in Fig.
6. The vectors defining the clusters are: T1=n11a1+n12a2 and
T2=n21a1+n22a2, where n1i and n2i are integers. A straight-
forward finite-size scaling analysis is not possible because of
the complicated changes in the cluster shape as the lattice
size increases.

We present results of the dependence of the charge order
parameter, the charge gap, and the spin correlations on �.
Numerical results are compared to the weak and strong-
coupling limits as appropriate.

A. Charge order

The charge order parameter is first computed for U=0 and
compared to exact tight-binding results on the infinite lattice.
This serves to calibrate the importance of finite-size effects
on a cluster. Second, the effect of U on charge ordering is
analyzed in detail.

The charge order parameter is

nB − nA = �
k,�

��0��cBk�
† cBk� − cAk�

† cAk����0� , �15�

where ��0� is the ground state of the Hamiltonian �1�.
In Fig. 7 the charge order parameter is plotted for both

signs of t on the Ns=18 site cluster of Fig. 6 and compared to
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FIG. 4. �Color online� Dependence of ground-state energies
with � for the four-site cluster with t�= t and U=100�t�. The Cou-
lomb interaction U, 2U, and 3U have been subtracted from the total
energies E0�5�, E0�6�, and E0�7�, respectively, for convenience.
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FIG. 5. �Color online� Dependence of the charge gap on � for
the four-site cluster. Note the increase of �c for any � for U� �t� of
Fig. 4 and also how the dependence for �� �t� is quite different with
�� �t�.
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FIG. 6. �Color online� Cluster shapes of different sizes used in
exact diagonalization calculations.
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the tight-binding result �U=0� of the extended system. Since
this cluster gives the best agreement with the infinite limit of
the noninteracting model, among all of the clusters that we
studied, we mostly show results for this cluster in the rest of
this paper.

The effect of Coulomb repulsion on charge transfer is also
shown in Fig. 7. The qualitative dependence of charge trans-
fer remains unchanged with U. However, increasing U does
suppress nB−nA a little for small and moderate �.

In Na0.5CoO2 the strong Coulomb interaction and weak
charge transfer imply:7,8 U�� and ���t�. Note also that in
this parameter regime charge transfer between A and B sites
is weak: nB−nA�0.2, for ���t� which implies that a charge-
transfer insulator formed by doubly occupied B sites alter-
nating with half-filled A sites is not possible.

B. Reciprocal space-charge ordering

We now turn our attention to the charge populations of the
one-electron �−� and �+� hybrid bands obtained in Eq. �5� for
U=0. The upper �lower� tight-binding band is half-filled
�filled� for any nonzero � in the t�0 case8 while for t�0
this is only the case for: ��0.68�t�. Simple arguments might
then suggest that if U is sufficiently large then the half-filled
band may undergo a Mott insulator transition. However, for
such a single-band argument to be valid the half-filled +
band must be sufficiently high in energy above the filled
band so that interband transitions induced by U can be safely
neglected.

In the basis of the noninteracting +,− band states the
Hamiltonian is

H = �
k�,�

���k�ck�,�
+ ck�,� +

1

Ns
�

k,k�,q�1,�2,�3,�4

V�k − q�1,k�2,k� + q�3,k��4�ck−q�1,�1

+ ck�+q�3,�2

+ ck��4,�2
ck�2,�1

, �16�

where the �’s refer to the two values + and − and V is the
Coulomb matrix describing the 16 different scattering pro-
cesses between the bands: ���k� of Eq. �5�. The Coulomb
matrix is

V�k1�1,k2�2,k3�3,k4�4�

= U��k1�1����k2�2���k3�3����k4�4� , �17�

with

��k�� =
1

�k

Ak�

Ak� − Ak

, �18�

where Ak� is given by �4� and �k, the normalization constant
of Eq. �3�.

The occupation of the noninteracting bands is obtained
through the expression: n�=�k���0�ck��

+ ck����0�.
In order to investigate the populations of the noninteract-

ing bands at large U we plot Lanczos results for n−−n+ for
Ns=18 in Fig. 8. For U=2�t�, we find that n−−n+=1. How-
ever, n−−n+�1 for large U. The interpretation of this result
is complicated as n−−n+ conflates two effects: �i� charge
transfer between the bands, effectively doping the + band
with electrons from the lower band; and �ii� for U�0 the
bands are no longer eigenstates, thus the physical interpreta-
tion of n−−n+ is unclear for large U. In spite of this interpre-
tative difficulties it is interesting to note that the behavior
seen in Fig. 8 differs from a recent mean-field approach8

which includes local electron correlations only. However, at
present, it is not possible to conclusively determine whether
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FIG. 7. �Color online� Charge disproportionation, nB−nA, be-
tween inequivalent rows in the ionic Hubbard model 1. In �a� tight-
binding �dash-dotted lines� exact results for U=0 are compared
with Lanczos diagonalization �closed symbols� for the Ns=18 tilted
cluster of Fig. 6 showing good agreement. In �b� the dependence of
nB−nA with U is shown from Lanczos diagonalization for t�0 on
the same cluster.

0 2 4 6 8 10
∆/|t|

0

0.2

0.4

0.6

0.8

1

U=2|t|
U=15|t|
U=100|t|

t<0n
-
-n

+

FIG. 8. �Color online� Difference in filling of the hybrid �
bands as a function of � / �t� for t�0 and several values of U / �t�.
Results are from Lanczos calculations on 18-site clusters.
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this is because nonlocal electron correlations may play an
important role or because of the strong interband scattering
induced by the large U which will eventually destroy the
reciprocal space description. This question is particularly im-
portant given the proposed role of tiny hole densities in the +
band8 in explaining the apparent discrepancy between the
insulating behavior suggested by resistivity,28,34 angular re-
solved photoemission spectra �ARPES�,35 and optical
conductivity43 and the observation of metallic quasiparticles
via Shubnikov–de Haas experiments34 on Na0.5CoO2. This
question requires future investigation.

C. Charge gap

In order to understand the electronic properties of model
�1� we now discuss the charge gap and its dependence with
charge order driven by � and the Coulomb repulsion. The
charge gap is defined by Eq. �2�. When t is small, the lowest-
order correction to excitation energies come from the kinetic
energy gain due to the propagation along the B�A� chains of
a hole �doublon� when extracting �adding� an electron to the
zeroth-order ground-state configuration. Using degenerate
perturbation theory on Hamiltonian �6� the gap to O�t2 /�� is

�c = � − 2�t� + 8t2/� − 2teff
�2� − 8t3/�2 + 	E1D

t−J, �19�

where 	E1D
t−J is the energy change when adding a hole to a

single half-filled A chain modeled by the t−J model with J
given by Eq. �7�. The second-order hopping term
teff
�2�=2t2 /�, contributes to the propagation of an antiholon in

the A chain. In the antiferromagnetic case, J�0, the energy,
	E1D

t−J in �19� per A chain site is given by the Bethe ansatz
expression33

	E1D
t−J =

− 2�t�
�

sin�nA�� − 8J�ln 2�nA
2�1 − sin�2nA��

2nA�
� + J ln 2,

�20�

where nA=1−1 /NC
A is the number of electrons in a single A

chain of NC
A sites when a single hole has been added to the

otherwise half-filled chain. In the ferromagnetic case
�J�0�

E1D
t−J = − 2�t� − J/2. �21�

Hence, the charge gap is found to be larger for t�0 than
t�0, as shown in Fig. 9, due to the geometrical frustration.
In contrast, on the square lattice, �c, does not depend on the
sign of t. The dependence on the sign of t becomes even
more apparent for ���t�, where it is clear that for t�0 the
gap is significantly larger than for t�0. Indeed, it may be
that for small � / �t� and t�0 the system is an insulator and
for t�0 it is metallic. However, finite-size effects prevent us
from making a definitive statement about the existence of a
metallic state for small � / �t�. We note that dependence on the
sign of t is the opposite from what one would expect from
weak-coupling arguments. For t�0 and U=�=0 and at 3/4-
filling the Fermi surface has perfect nesting and there is a
van Hove singularity in the density of states at the Fermi
energy. Hence, weak-coupling arguments would suggest that
for this sign of t the system would have a greater tendency to
density wave instabilities and insulating states. Further, our
mean-field slave boson calculations8 also predict that the in-
sulating state is more stable for t�0 than t�0, in contrast to
the results reported in Fig. 9.
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FIG. 9. �Color online� Dependence of the charge gap on the
on-site potential �. The charge gap for U=100�t� on a Ns=18 tilted
cluster �a� and a Ns=16 ladder-type cluster �b� �see Fig. 6� is shown.
Dashed lines denote the results of the strong-coupling expansion
�19� for comparison.
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FIG. 10. �Color online� Development of magnetic order. The
static spin structure factor S�q�� at the wavevectors �a�
Q1= �0,� /�3�, associated with C-type antiferromagnetism �Ref.
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ELECTRONIC AND MAGNETIC PROPERTIES OF THE… PHYSICAL REVIEW B 80, 045116 �2009�

045116-7



D. Magnetic order

Spin correlations in the model are analyzed through the
static spin structure factor

S�q� =
1

Ns
�
ij

expiq·�Ri−Rj��Si
zSj

z� , �22�

where Sj
z= �nj↑−nj↓� /2 is the z component of the spin at the

lattice site R j.
The dependence on � of the spin structure factor, S�q�, is

shown in Fig. 10 for two different wavevectors with
U=100�t�. For t�0 the results indicate a transition to the
magnetically ordered state with wavevector Q1= �� ,� /�3�
�which implies that the spins within the A chains are antifer-
romagnetically ordered and antiferromagnetically coupled
with neighboring A chains� at about �=2�t�. This is the spin
pattern shown in Fig. 1. For t�0 there is a range of � for
which the A spins are ferromagnetically coupled.

The FM region obtained from Lanczos diagonalization is
in agreement with the condition J�0 extracted from a
strong-coupling expansion. This condition gives a FM region
for 5t����2U.

The wavevector of the magnetic order and the associated
magnetic moment of the ground state of the model with
t�0 and U��� �t� �see Fig. 1� are consistent with the an-
tiferromagnetic ordering wavevector observed in
Na0.5CoO2.37,38 However, the observed charge transfer be-
tween A and B chains in Na0.5CoO2

39–41 is much smaller
than the complete charge transfer sketched in Fig. 1. Such a
large magnetic moment in the presence of a weak charge
transfer between A and B sites is not expected from either
classical or weak-coupling arguments. Nevertheless, our pre-
vious exact diagonalization calculations for U�W �see Fig.
4 of Ref. 7� found a substantial magnetic moment and small
charge transfer, even for small �, consistent with the experi-
mental results.

IV. DYNAMICAL PROPERTIES

In this section we discuss dynamical properties of the
model �1�. We use Lanczos diagonalization on Ns=18 clus-
ters to compute the one-electron spectral density and the fre-
quency dependent conductivity.

A. One-electron spectral density

The spectral density per spin is

A��� = �
m

���m�N − 1��ci���0��2	�� + 	Em�N − 1� − E0�N�


+ ���m�N + 1��ci�
+ ��0��2	�� − 	Em�N + 1� − E0�N�
 ,

�23�

where Em�N�1� is the spectra of excitations of the full
quantum many-body problem with N�1 electrons and
��m�N�1�� its associated wave functions. E0�N� is the
ground state of the N electron system with wave function
��0�.

In Fig. 11 we show the spectral density for U=100�t� and

�=10�t�. As the system is well into the strong-coupling re-
gime, U��� �t�, we can understand the main excitations
observed on the basis of the atomic limit �t=0�.

For t=0 extracting an electron from the lattice can lead to
three possible excitation energies: −3� /2, � /2, and
−� /2+U. While adding an electron we only have one exci-
tation energy at � /2+U. Therefore, four peaks at these ex-
citation energies are expected in A���. A gap of �c=� is
therefore obtained when t=0 typical of a charge-transfer in-
sulator. When the hopping is turned on, the lowest-order cor-
rection to excitation energies comes from the propagation of
a hole �doublon� along the B�A� chains when extracting �add-
ing� an electron to the zeroth-order ground-state configura-
tion. As the hole �electron� added can be on any site of the
chains the ground state is NA�NB� -fold degenerate. This de-
generacy is lifted at the first order in t, where the excitation
energies for removing an electron are � /2−2�t��sin�k�−1�
and � /2−2�t�cos�k�, from the A and B sites, respectively.
Adding an electron to the A chain leads to a doublon with
excitation energy � /2+U+2�t��sin�k�−1� Thus, a character-
istic one-dimensional broadening of 4�t� to the four peaks
should be expected and the gap is reduced from the atomic
limit result to �c=�−4�t�. The hybridization between the
chains lowers the ground-state energy for the N electron con-
figuration, due to virtual excursions from a B site to a
nearest-neighbor A site, by −4�t�2 /� with no cost in Coulomb
repulsion energy. Therefore, the lowest N+1 electron excita-
tion energy is pushed upwards by +4�t�2 /� and the N−1
downward by −4�t�2 /�. This leads to an increase in the gap:
�c=�−4�t�+8t2 /�. The final charge gap, �c, including the
higher-order corrections of Eq. �19� coincides with the nu-
merical calculation shown in the inset of Fig. 11.

In Fig. 12 we show the evolution of A��� with � for
U=15�t�. The four-peak structure discussed above for the
CTI remains for this smaller value of U and �=10�t�. As �
decreases the peaks broaden due to hybridization between
the A and B chains and shift in energy. For �= �t�, A���
contains a lower Hubbard band �LHB�, an upper Hubbard
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FIG. 11. �Color online� Density of states of the charge-transfer
insulator. We take U=100�t�, �=10�t�, and t�0. The inset shows
the low-energy part where the charge gap agrees with the strong-
coupling expression Eq. �19�. The excitation energies in the atomic
limit �t=0� are shown by the arrows below the abscissa. The
chemical-potential ��=�� is shown by the vertical dashed line.
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band �UHB� and most of the spectral weight is around the
chemical-potential �=�. We find that the energy difference
between the LHB and UHB is much larger than U, which we
attribute to hybridization between the chains. Thus we iden-
tify this regime as a covalent insulator.7,42

B. Frequency dependent conductivity

The incoherent part of the optical conductivity is calcu-
lated through the current correlation function

���� =
�e2

Ns
�

m�0

���m�N��jx��0��2

Em − E0
		� − �Em − E0�
 ,

�24�

where, jx is the x component of the current operator

j = it �
i,�,�

�Ri+� − Ri�ci+�,�
+ ci,�, �25�

with Ri denoting the position of the ith lattice site, and � its
nearest-neighbor sites.

The evolution of the optical conductivity, ����, with � is
shown in Fig. 13. There are two main absorption bands in the
optical spectra. One is fixed at large energies of about U and
is associated with excitations between the Hubbard bands
and a lower band which shifts with �. The lower absorption
band is due to excitations associated with transferring an
electron from the − band to the + band. These produce a
continuum of particle-hole excitations of width of order
W�9�t�.

We have also calculated the Drude weight for a range of
parameters in the model Hamiltonian. We do not show the
results here because due to finite-size effects the detailed
interpretation is not clear. However, the trend is clear: as
U / �t� and � / �t� increase, the Drude weight decreases signifi-
cantly.

V. CONCLUSIONS

We have considered the electronic properties of an ionic
Hubbard model at 3/4-filling with stripes of alternating on-
site potential. This model has a rich phase diagram, in which
various types of insulating and metallic states compete. A
charge-transfer-type insulator, a Mott insulator, and a cova-
lent insulator occur in different U−�− t parameter regimes.
The geometrical frustration of the triangular lattice leads to
different magnetic properties depending on the sign of t. For
t�0 an antiferromagnetic interaction occurs whereas for
t�0 a ferromagnetic coupling occurs in a broad range of
parameters.

At U��� �t�, a charge-transfer insulator of doubly occu-
pied chains of B sites alternating with singly occupied A
chains occurs, i.e., nB−nA=1. As � is decreased the system
remains insulating although the charge disproportionation
between sites is incomplete: nB−nA�1.

The insulating state of Na0.5CoO2 is characterized by a
small charge modulation, a small charge gap, and strong
Coulomb interaction. Electronic structure calculations sug-
gest that Na0.5CoO2 is in the parameter regime, U� �t� and
���t�, which is different to the strong-coupling parameter
regime. This regime is difficult to analyze within weak-
coupling perturbation theory and numerical approaches are
helpful. The model with no charge modulation, �=0, re-
duces to a highly-doped Hubbard �or t−J� model on a trian-
gular lattice which is believed to be metallic. However, under
a weak external periodic potential, ��O��t��, our exact di-
agonalization analysis suggests a nonzero charge gap. Unlike
the charge-transfer insulators proposed previously for
Na0.5CoO2 this insulator is characterized by small real space
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FIG. 12. �Color online� Evolution of the energy dependence of
the density of states with decreasing charge transfer. We take
U=15�t� and vary � from 10�t� �top-left, charge-transfer insulator� to
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charge transfer: nB−nA�1. An insulating state induced by
strong hybridization of the noninteracting bands is realized
and is reminiscent of the covalent insulator description of
some transition-metal oxides.42

The behavior of the charge gap for U� �t� has been further
explored by an exact analysis of two- and four-site clusters
which indicates that the charge gap is always enhanced with
� even at small values. A different dependence on � of the
ground state many-body energies E0�N�, E0�N−1�, and
E0�N+1� is found which reflects the different nature of the
bonds formed between inequivalent A and B sites. Two-
electron bonds are well-described as valence bonds which
contain the effects of strong electronic correlations whereas
three-electron bonds are accurately described by “molecular”
orbitals which are uncorrelated. While the former type of
bond depends weakly on � the latter does not.

Optical conductivity experiments suggest a gap on the
order of 0.020 eV ���t� /5�, a sharp peak at about 0.026 eV
���t� /4�, which is at the lower edge of a continuum of exci-
tations which reaches energies up to about 0.9 eV ��9�t��.43

This behavior is consistent with the low-energy adsorption
band found in the calculated ���� �see Fig. 13� which is
located at about ��O��t�� with the continuum being the
whole set of particle-hole excitations between the two hy-
bridized bands which spread over the whole bandwidth �W.

Recent experiments on NaxCoO2 for x=2 /3 the Na ions
induce a charge ordering pattern with filled nonmagnetic
Co3+ ions arranged in a triangular lattice and Co3.44+ mag-
netic sites forming a kagomé lattice structure with the trans-
ferred holes moving on it. These experiments are important
as they relate the charge order with the different magnetic
and electronic properties of the material. The present ionic
Hubbard model modified to include such ordering patterns
could be used to explore the unconventional metallic prop-
erties of NaxCoO2 at x=2 /3.

We now briefly discuss the relationship between the re-
sults we obtained here and those we recently obtained for the
same model with a slave boson mean-field theory.8 Slave
bosons give an insulator only for ��8�t����5�t�� for t
�0�t�0� whereas exact diagonalization suggests that the
ground state is insulating even for ���t�.

An important open question that this study raises is, what
is the ground state for small � / �t�? The temperature depen-
dence of the magnetic susceptibility of the t−J model on the
triangular lattice has been calculated using exact diagonaliza-
tion on small clusters.44 The bottom left panel of Fig. 6 in
Ref. 44 shows that for J=0 �i.e., U→� in the Hubbard
model� that at 3/4-filling that for all temperatures above
about 0.4�t� that the susceptibility is the same as that for
localized noninteracting spin 1/2 particles. The susceptibility
has a maximum at about 0.3�t� and then decreases with de-
creasing temperature to a value about two to three times the
value for U=0. These results raise the question as to the
nature of the ground state and the tendency of the electrons
to become localized and the spins to antiferromagnetically
order, even in the absence of an exchange interaction, due to
kinetic antiferromagnetism.45
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APPENDIX A: HEISENBERG EXCHANGE COUPLINGS

In this section we discuss the various contributions to the
nearest-neighbor exchange coupling, J, between the A sites.
Taking ��0� as the ground-state configuration in the strong-
coupling limit U��� t, there is no correction to the lowest
order in the kinetic energy. To O�t2� we have the usual su-
perexchange antiferromagnetic contribution: J=4t2 /U. To
O�t3� “ring” exchange processes around the three-site
plaquette of the type shown in Fig. 14 remove the spin de-
generacy and were already discussed by Penc and
collaborators23 in a Hubbard model on a zigzag ladder. The
energy of the singlet state in Fig. 14 is shifted by 4t3 /�2

while the triplet state by −4t3 /�2. These shifts are opposite
to the two-site case. As there are two possible ways of going
around the triangle in Fig. 14 and there are two neighboring
B sites �one below the two A sites as shown in Fig. 14 and
another above� the final contribution to the effective J at
O�t3� is J=Et−Es=−8t3 /�2 enhancing the ferromagnetic ten-
dencies as compared to the ladder case23 by a factor of two.
In contrast “ring” exchange processes around a four-site
plaquette 	O�t4�
 of the type shown in Fig. 15 lead to an AF
contribution to J=40t4 /�3. Including all possible exchange
processes, a total contribution to J valid to O��t /��4� is

J =
4t2

U
−

8t3

�2 −
16t3

�U
+

40t4

�3 +
48t4

�2�2� + U�
+

16t4

�2U
.

�A1�

A

B

FIG. 14. Three-site “ring” exchange processes contributing to
the exchange interaction, J, between neighbor spins in an A chain of
the t−J−J� model 	compare Eq. �6�
.
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FIG. 15. Four-site “ring” exchange processes of O��t /��4� con-
tributing to the exchange interaction between two neighboring sites
in the A chains in model �6�.
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APPENDIX B: GROUND-STATE WAVE FUNCTIONS FOR
THE FOUR-SITE CLUSTER AND VALENCE-BOND

THEORY

In this appendix, we discuss exact ground-state wave
functions on the Ns=4 cluster of Fig. 3 with t�= t and N=5,
6, and 7 electrons. Valence-bond �VB� states, which are neu-
tral configurations formed by two neighbor electrons in a
singlet,32 are found to describe the exact wave function ac-
curately for U� �t� and t�0 for N=6. This is because ionic
configurations have a negligible weight in the full wave
function at large U values.

1. Ground state for N=6 electrons

The exact ground-state wave function, ��0�6��, is well-
described by the resonance between different possible VB
states between electrons inside the cluster

��0�6�� � a� ↑↓
_ `

↑↓ � + b� _

↑↓ ↑↓
`

�
+ c�� `

↑↓ _

↑↓ � + � `

_ ↑↓
↑↓ �

+ � ↑↓
↑↓ _

`
� + � ↑↓

` ↑↓
_

�� . �B1�

Here, singlet VB states are shown as antiparallel spins
in boldface. Note that the horizontal sites are A sites
while the vertical sites are B sites as sketched in Fig. 3.
For U=� and �=0, the energy of the RVB state is
E0

RVB�6�=−3.3723�t� and the weights of the wave function
are a=b=0.4544, and c=0.3831. This RVB wave function
gives an accurate description of the exact ground-state en-
ergy which for U=100�t� is: E0�6�−2U=−3.453�t� and a
wave function described by �B1� with a=0.459, b=0.445,
and c=0.382, plus small ionic terms. Note that, on the four-
site cluster, the A and B sites are not equivalent even for
�=0 due to geometry of the cluster �cf. Fig. 3�.

The RVB wave function also accurately describes the
ground-state energy in the limit: U��� �t�. The energy of
the RVB state for �=10�t� is E0

RVB=−10.433�t�, and the wave

function has weights a=0.977, b=0.021, and c=0.1058. This
is in good agreement with the exact ground state, which has
E0�6�−2U=−10.453�t� and a=0.976, b=0.024, and
c=0.108 �plus small ionic terms�. Thus, the VB formed be-
tween the two A sites dominates the wave function.

2. Ground state for N=7 electrons

The seven-electron system contains one hole which can
hop around the cluster so the Coulomb interaction has no
effect. The ground state is simply a linear combination of the
states with one hole in the cluster

��0�7�� � d�� ↓
↑↓ ↑↓

↑↓ � + � ↑↓
↑↓ ↑↓

↓ ��
+ e�� ↑↓

↑↓ ↓
↑↓ � + � ↑↓

↓ ↑↓
↑↓ �� . �B2�

Note that the e and d coefficients are different even for
�=0 due to the geometry of the cluster �cf. Fig. 3�.

3. Ground state for N=5 electrons

The five-electron ground-state wave function is approxi-
mately described by

��0�5�� � f�� ↓
_ `

↑↓ � + � ↑↓
_ `

↓ ��
+ g�� `

↑↓ ↑
`

� + � `

↑ ↑↓
`

�� . �B3�

This state with two spin-up electrons and three spin-down
electrons have Stot

z =−1 /2 which is degenerate to the
Stot

z =+1 /2 �not shown�. In the first configuration two spins
on the A sites combine into a singlet whereas in the last
configuration a triplet between B sites is formed �the parallel
spins in boldface denote the triplet combination�. Hence, for
this case, ferromagnetic correlations occur between B sites in
contrast to the antiferromagnetic correlations between elec-
trons on the A sites. For U=100�t� and �=0, the ground-state
energy: E0�5�−U=−2.41�t�. while for �=10�t� the ground-
state energy is E0�5�−U=−5.385�t�.
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