714 research outputs found

    Geographic Variation in Wood Specific Gravity: Effects of Latitude, Temperature, and Precipitation

    Get PDF
    Wood basic specific gravity (SG) was compared at sites located along a gradient from 52°N latitude to the equator. Mean SG increased by 0.0049 per °C mean annual temperature (MAT), and decreased by 0.00017 per cm of mean annual precipitation (MAP). Considered alone, MAT was a better predictor of mean SG across the temperate zone (3-22°C MAT, latitude north of 29°N; r2 = 0.80) than it was across the entire MAT range (r2 = 0.62) or across warm tropical sites alone (MAT > 23°C; r2 = 0.33, p = 0.67). In contrast, MAP considered alone was a better predictor of mean SG in the warm tropical sites (r2 = 0.62) than across all sites (r2 = 0.04, p = 0.39).Variability in SG among the sites was compared using two measures of dispersion: range and standard deviation. As MAT increased across the temperate zone, maximum SG increased and minimum SG remained constant, resulting in an increase in SG range; SG standard deviation, however, remained constant. Both SG range and SG standard deviation increased dramatically in the warm tropical zone relative to the temperate zone, demonstrating that variability in SG in the warm tropics is much greater than would be predicted from greater species richness alone

    Extreme Radial Changes in Wood Specific Gravity in Some Tropical Pioneers

    Get PDF
    Twelve Hampea appendiculata, six Heliocarpus appendiculatus, and twelve Ochroma pyramidale trees from tropical wet forest in Costa Rica were sampled across their radii. Wood from all three species increased linearly in specific gravity from pith to bark. The magnitude of the increase was about 0.1 units of specific gravity per 10 cm of radius, although there were differences between the species and between trees within each species. All three species colonize clearings and disturbed sites, and these extreme changes in specific gravity may be associated with the pioneer habit in the wet forest

    Adsorption geometry and electronic structure of iron phthalocyanine on Ag surfaces: A LEED and photoelectron momentum mapping study

    Full text link
    We present a comprehensive study of the adsorption behavior of iron phthalocyanine on the low-index crystal faces of silver. By combining measurements of the reciprocal space by means of photoelectron momentum mapping and low energy electron diffraction, the real space adsorption geometries are reconstructed. At monolayer coverage ordered superstructures exist on all studied surfaces containing one molecule in the unit cell in case of Ag(100) and Ag(111), and two molecules per unit cell for Ag(110). The azimuthal tilt angle of the molecules against the high symmetry directions of the substrate is derived from the photoelectron momentum maps. A comparative analysis of the momentum patterns on the substrates with different symmetry indicates that both constituents of the twofold degenerate FePc lowest unoccupied molecular orbital are occupied by charge transfer from the substrate at the interface

    Inhuman shields - children caught in the crossfire of domestic violence

    Get PDF
    Background. Child abuse is a worldwide scourge. One of its most devastating manifestations is non-accidental head injury (NAHI).Methods. This is a retrospective chart review of children presenting to the Red Cross Children's Hospital trauma unit with a diagnosis of NAHI over a 3-year period.Results. Sixty-eight children were included in the study and 2 different groups were identified. Fifty-three per cent of the children were deliberately injured (median age 2 years), while 47% were allegedly not the intended target of the assailant (median age 9 months). The assailant was male in 65% of the intentional assaults and male in 100% of the unintentional assaults, with the intended adult victim female in 85% of the latter cases. Overall, 85% of the assaults were committed in the child's own home.Conclusions. The high proportion of cases in which a young child was injured unintentionally suggests that these infants effectively become shields in assaults committed by adults. In this context any attempts to deal with child abuse must also address the concurrent intimate partner violence

    Inhuman shields — children caught in the crossfire of domestic violence

    Get PDF
    Background. Child abuse is a worldwide scourge. One of its most devastating manifestations is non-accidental head injury (NAHI). Methods. This is a retrospective chart review of children presenting to the Red Cross Children’s Hospital trauma unit with a diagnosis of NAHI over a 3-year period. Results. Sixty-eight children were included in the study and 2 different groups were identified. Fifty-three per cent of the children were deliberately injured (median age 2 years), while 47% were allegedly not the intended target of the assailant (median age 9 months). The assailant was male in 65% of the intentional assaults and male in 100% of the unintentional assaults, with the intended adult victim female in 85% of the latter cases. Overall, 85% of the assaults were committed in the child’s own home. Conclusions. The high proportion of cases in which a young child was injured unintentionally suggests that these infants effectively become shields in assaults committed by adults. In this context any attempts to deal with child abuse must also address the concurrent intimate partner violence

    The systematic functional characterisation of Xq28 genes prioritises candidate disease genes

    Get PDF
    BACKGROUND: Well known for its gene density and the large number of mapped diseases, the human sub-chromosomal region Xq28 has long been a focus of genome research. Over 40 of approximately 300 X-linked diseases map to this region, and systematic mapping, transcript identification, and mutation analysis has led to the identification of causative genes for 26 of these diseases, leaving another 17 diseases mapped to Xq28, where the causative gene is still unknown. To expedite disease gene identification, we have initiated the functional characterisation of all known Xq28 genes. RESULTS: By using a systematic approach, we describe the Xq28 genes by RNA in situ hybridisation and Northern blotting of the mouse orthologs, as well as subcellular localisation and data mining of the human genes. We have developed a relational web-accessible database with comprehensive query options integrating all experimental data. Using this database, we matched gene expression patterns with affected tissues for 16 of the 17 remaining Xq28 linked diseases, where the causative gene is unknown. CONCLUSION: By using this systematic approach, we have prioritised genes in linkage regions of Xq28-mapped diseases to an amenable number for mutational screens. Our database can be queried by any researcher performing highly specified searches including diseases not listed in OMIM or diseases that might be linked to Xq28 in the future

    Аналіз деформування матеріалу з множинними тріщинами термомеханічної втоми як розломно-блокового середовища

    Get PDF
    Recent advances in cancer biology have emerged important roles for microRNAs (miRNAs) in regulating tumor responses. However, their function in mediating intercellular communication within the tumor microenvironment is thus far poorly explored. Here, we found miR-206 to be abrogated in human pancreatic ductal adenocarcinoma (PDAC) specimens and cell lines. We show that miR-206 directly targets the oncogenes KRAS and annexin a2 (ANXA2), thereby acting as tumor suppressor in PDAC cells by blocking cell cycle progression, cell proliferation, migration and invasion. Importantly, we identified miR-206 as a negative regulator of oncogenic KRAS-induced nuclear factor-kappa B transcriptional activity, resulting in a concomitant reduction of the expression and secretion of pro-angiogenic and pro-inflammatory factors including the cytokine interleukin-8, the chemokines (C-X-C motif) ligand 1 and (C-C motif) ligand 2, and the granulocyte macrophage colony-stimulating factor. We further show that miR-206 abrogates the expression and secretion of the potent pro-lymphangiogenic factor vascular endothelial growth factor C in pancreatic cancer cells through an NF-kappa B-independent mechanism. By using in vitro and in vivo approaches, we reveal that re-expression of miR-206 in PDAC cells is sufficient to inhibit tumor blood and lymphatic vessel formation, thus leading to a significant delay of tumor growth and progression. Taken together, our study sheds light onto the role of miR-206 as a pleiotropic modulator of different hallmarks of cancer, and as such raising the intriguing possibility that miR-206 may be an attractive candidate for miRNA-based anticancer therapies.Funding Agencies|German Federal Ministry of Education and Research (NGFN grant) [01GS0816]; Deutsche Forschungsgemeinschaft (DIP project) [WI3499/1-1]</p

    Increasing the sensitivity of reverse phase protein arrays by antibody-mediated signal amplification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reverse phase protein arrays (RPPA) emerged as a useful experimental platform to analyze biological samples in a high-throughput format. Different signal detection methods have been described to generate a quantitative readout on RPPA including the use of fluorescently labeled antibodies. Increasing the sensitivity of RPPA approaches is important since many signaling proteins or posttranslational modifications are present at a low level.</p> <p>Results</p> <p>A new antibody-mediated signal amplification (AMSA) strategy relying on sequential incubation steps with fluorescently-labeled secondary antibodies reactive against each other is introduced here. The signal quantification is performed in the near-infrared range. The RPPA-based analysis of 14 endogenous proteins in seven different cell lines demonstrated a strong correlation (r = 0.89) between AMSA and standard NIR detection. Probing serial dilutions of human cancer cell lines with different primary antibodies demonstrated that the new amplification approach improved the limit of detection especially for low abundant target proteins.</p> <p>Conclusions</p> <p>Antibody-mediated signal amplification is a convenient and cost-effective approach for the robust and specific quantification of low abundant proteins on RPPAs. Contrasting other amplification approaches it allows target protein detection over a large linear range.</p

    Interaction of rat alveolar macrophages with dental composite dust

    Get PDF
    Background: Dental composites have become the standard filling material to restore teeth, but during the placement of these restorations, high amounts of respirable composite dust (<5 mu m) including many nano-sized particles may be released in the breathing zone of the patient and dental operator. Here we tested the respirable fraction of several composite particles for their cytotoxic effect using an alveolar macrophage model system. Methods: Composite dust was generated following a clinical protocol, and the dust particles were collected under sterile circumstances. Dust was dispersed in fluid, and 5-mu m-filtered to enrich the respirable fractions. Quartz DQ12 and corundum were used as positive and negative control, respectively. Four concentrations (22.5 mu g/ml, 45 mu g/ml, 90 mu g/ml and 180 mu g/ml) were applied to NR8383 alveolar macrophages. Light and electron microscopy were used for subcellular localization of particles. Culture supernatants were tested for release of lactate dehydrogenase, glucuronidase, TNF-alpha, and H2O2. Results: Characterization of the suspended particles revealed numerous nano-sized particles but also many high volume particles, most of which could be removed by filtering. Even at the highest concentration (180 mu g/ml), cells completely cleared settled particles from the bottom of the culture vessel. Accordingly, a mixture of nano- and micron-scaled particles was observed inside cells where they were confined to phagolysosomes. The filtered particle fractions elicited largely uniform dose-dependent responses, which were elevated compared to the control only at the highest concentration, which equaled a mean cellular dose of 120 pg/cell. A low inflammatory potential was identified due to dose-dependent release of H2O2 and TNF-alpha. However, compared to the positive control, the released levels of H2O2 and TNF-alpha were still moderate, but their release profiles depended on the type of composite. Conclusions: Alveolar macrophages are able to phagocytize respirable composite dust particle inclusive nanoparticles. Since NR8383 cells tolerate a comparatively high cell burden (60 pg/cell) of each of the five materials with minimal signs of cytotoxicity or inflammation, the toxic potential of respirable composite dust seems to be low. These results are reassuring for dental personnel, but more research is needed to characterize the actual exposure and uptake especially of the pure nano fraction

    Interaction of rat alveolar macrophages with dental composite dust

    Get PDF
    Background: Dental composites have become the standard filling material to restore teeth, but during the placement of these restorations, high amounts of respirable composite dust (<5 mu m) including many nano-sized particles may be released in the breathing zone of the patient and dental operator. Here we tested the respirable fraction of several composite particles for their cytotoxic effect using an alveolar macrophage model system. Methods: Composite dust was generated following a clinical protocol, and the dust particles were collected under sterile circumstances. Dust was dispersed in fluid, and 5-mu m-filtered to enrich the respirable fractions. Quartz DQ12 and corundum were used as positive and negative control, respectively. Four concentrations (22.5 mu g/ml, 45 mu g/ml, 90 mu g/ml and 180 mu g/ml) were applied to NR8383 alveolar macrophages. Light and electron microscopy were used for subcellular localization of particles. Culture supernatants were tested for release of lactate dehydrogenase, glucuronidase, TNF-alpha, and H2O2. Results: Characterization of the suspended particles revealed numerous nano-sized particles but also many high volume particles, most of which could be removed by filtering. Even at the highest concentration (180 mu g/ml), cells completely cleared settled particles from the bottom of the culture vessel. Accordingly, a mixture of nano- and micron-scaled particles was observed inside cells where they were confined to phagolysosomes. The filtered particle fractions elicited largely uniform dose-dependent responses, which were elevated compared to the control only at the highest concentration, which equaled a mean cellular dose of 120 pg/cell. A low inflammatory potential was identified due to dose-dependent release of H2O2 and TNF-alpha. However, compared to the positive control, the released levels of H2O2 and TNF-alpha were still moderate, but their release profiles depended on the type of composite. Conclusions: Alveolar macrophages are able to phagocytize respirable composite dust particle inclusive nanoparticles. Since NR8383 cells tolerate a comparatively high cell burden (60 pg/cell) of each of the five materials with minimal signs of cytotoxicity or inflammation, the toxic potential of respirable composite dust seems to be low. These results are reassuring for dental personnel, but more research is needed to characterize the actual exposure and uptake especially of the pure nano fraction
    corecore