17 research outputs found

    Intestinal Immunity to Poliovirus Following Sequential Trivalent Inactivated Polio Vaccine/Bivalent Oral Polio Vaccine and Trivalent Inactivated Polio Vaccine-only Immunization Schedules: Analysis of an Open-label, Randomized, Controlled Trial in Chilean Infants.

    Get PDF
    Background: Identifying polio vaccine regimens that can elicit robust intestinal mucosal immunity and interrupt viral transmission is a key priority of the polio endgame. Methods: In a 2013 Chilean clinical trial (NCT01841671) of trivalent inactivated polio vaccine (IPV) and bivalent oral polio vaccine (bOPV; targeting types 1 and 3), infants were randomized to receive IPV-bOPV-bOPV, IPV-IPV-bOPV, or IPV-IPV-IPV at 8, 16, and 24 weeks of age and challenged with monovalent oral polio vaccine type 2 (mOPV2) at 28 weeks. Using fecal samples collected from 152 participants, we investigated the extent to which IPV-bOPV and IPV-only immunization schedules induced intestinal neutralizing activity and immunoglobulin A against polio types 1 and 2. Results: Overall, 37% of infants in the IPV-bOPV groups and 26% in the IPV-only arm had detectable type 2-specific stool neutralization after the primary vaccine series. In contrast, 1 challenge dose of mOPV2 induced brisk intestinal immune responses in all vaccine groups, and significant rises in type 2-specific stool neutralization titers (P < .0001) and immunoglobulin A concentrations (P < 0.0001) were measured 2 weeks after the challenge. In subsidiary analyses, duration of breastfeeding also appeared to be associated with the magnitude of polio-specific mucosal immune parameters measured in infant fecal samples. Conclusions: Taken together, these results underscore the concept that mucosal and systemic immune responses to polio are separate in their induction, functionality, and potential impacts on transmission and, specifically, provide evidence that primary vaccine regimens lacking homologous live vaccine components are likely to induce only modest, type-specific intestinal immunity

    Mucosal immunity to poliovirus.

    Get PDF
    A cornerstone of the global initiative to eradicate polio is the widespread use of live and inactivated poliovirus vaccines in extensive public health campaigns designed to prevent the development of paralytic disease and interrupt transmission of the virus. Central to these efforts is the goal of inducing mucosal immunity able to limit virus replication in the intestine. Recent clinical trials have evaluated new combined regimens of poliovirus vaccines, and demonstrated clear differences in their ability to restrict virus shedding in stool after oral challenge with live virus. Analyses of mucosal immunity accompanying these trials support a critical role for enteric neutralizing IgA in limiting the magnitude and duration of virus shedding. This review summarizes key findings in vaccine-induced intestinal immunity to poliovirus in infants, older children, and adults. The impact of immunization on development and maintenance of protective immunity to poliovirus and the implications for global eradication are discussed

    CD4+ T cell cytokine responses to the DAR-901 booster vaccine in BCG-primed adults:A randomized, placebo-controlled trial

    Get PDF
    <div><p>Background</p><p>DAR-901 is an inactivated whole cell tuberculosis booster vaccine, prepared using a new scalable, broth-grown method from the master cell bank of SRL172, a vaccine previously shown to prevent tuberculosis. This study examined whether DAR-901 (a) induces CD4+ T cell cytokine profiles previously proposed as correlates of protection and (b) has a specific vaccine-induced immunological signature compared to BCG or placebo.</p><p>Methods</p><p>We analysed CD4+ T cell cytokine immune responses from 10 DAR-901 recipients, 9 BCG recipients and 9 placebo recipients from the Phase I DAR-901 MDES trial. In that study, HIV-negative, IGRA-negative participants with prior BCG immunization were randomized (double-blind) to receive three intradermal injections of DAR-901 or saline placebo or two injections of saline placebo followed by an intradermal injection of BCG. Antigen-specific functional and phenotypic CD4+ T cell responses along with effector phenotype of responder cells were measured by intracellular cytokine staining.</p><p>Results</p><p>DAR-901 recipients exhibited increased DAR-901 antigen-specific polyfunctional or bifunctional T cell responses compared to baseline. Vaccine specific CD4+ IFNγ, IL2, TNFα and any cytokine responses peaked at 7 days post-dose 3. Th1 responses predominated, with most responder cells exhibiting a polyfunctional effector memory phenotype. BCG induced greater CD4+ T cell responses than placebo while the more modest DAR-901 responses did not differ from placebo. Neither DAR-901 nor BCG induced substantial or sustained Th17 /Th22 cytokine responses.</p><p>Conclusion</p><p>DAR-901, a TB booster vaccine grown from the master cell bank of SRL 172 which was shown to prevent TB, induced low magnitude polyfunctional effector memory CD4+ T cell responses. DAR-901 responses were lower than those induced by BCG, a vaccine that has been shown ineffective as a booster to prevent tuberculosis disease. These results suggest that induction of higher levels of CD4+ cytokine stimulation may not be a critical or pre-requisite characteristic for candidate TB vaccine boosters.</p><p>Trial registration</p><p>ClinicalTrials.gov <a href="https://clinicaltrials.gov/ct2/show/NCT02063555" target="_blank">NCT02063555</a>.</p></div

    A Randomized Phase 4 Study of Immunogenicity and Safety After Monovalent Oral Type 2 Sabin Poliovirus Vaccine Challenge in Children Vaccinated with Inactivated Poliovirus Vaccine in Lithuania.

    Get PDF
    BACKGROUND: Understanding immunogenicity and safety of monovalent type 2 oral poliovirus vaccine (mOPV2) in inactivated poliovirus vaccine (IPV)-immunized children is of major importance in informing global policy to control circulating vaccine-derived poliovirus outbreaks. METHODS: In this open-label, phase 4 study (NCT02582255) in 100 IPV-vaccinated Lithuanian 1-5-year-olds, we measured humoral and intestinal type 2 polio neutralizing antibodies before and 28 days after 1 or 2 mOPV2 doses given 28 days apart and measured stool viral shedding after each dose. Parents recorded solicited adverse events (AEs) for 7 days after each dose and unsolicited AEs for 6 weeks after vaccination. RESULTS: After 1 mOPV2 challenge, the type 2 seroprotection rate increased from 98% to 100%. Approximately 28 days after mOPV2 challenge 34 of 68 children (50%; 95% confidence interval, 38%-62%) were shedding virus; 9 of 37 (24%; 12%-41%) were shedding 28 days after a second challenge. Before challenge, type 2 intestinal immunity was undetectable in IPV-primed children, but 28 of 87 (32%) had intestinal neutralizing titers ≥32 after 1 mOPV2 dose. No vaccine-related serious or severe AEs were reported. CONCLUSIONS: High viral excretion after mOPV2 among exclusively IPV-vaccinated children was substantially lower after a subsequent dose, indicating induction of intestinal immunity against type 2 poliovirus

    Vaccine-induced mucosal immunity to poliovirus: analysis of cohorts from an open-label, randomised controlled trial in Latin American infants.

    Get PDF
    BACKGROUND: Identification of mechanisms that limit poliovirus replication is crucial for informing decisions aimed at global polio eradication. Studies of mucosal immunity induced by oral poliovirus (OPV) or inactivated poliovirus (IPV) vaccines and mixed schedules thereof will determine the effectiveness of different vaccine strategies to block virus shedding. We used samples from a clinical trial of different vaccination schedules to measure intestinal immunity as judged by neutralisation of virus and virus-specific IgA in stools. METHODS: In the FIDEC trial, Latin American infants were randomly assigned to nine groups to assess the efficacy of two schedules of bivalent OPV (bOPV) and IPV and challenge with monovalent type 2 OPV, and stools samples were collected. We selected three groups of particular interest-the bOPV control group (serotypes 1 and 3 at 6, 10, and 14 weeks), the trivalent attenuated OPV (tOPV) control group (tOPV at 6, 10, and 14 weeks), and the bOPV-IPV group (bOPV at 6, 10, and 14 weeks plus IPV at 14 weeks). Neutralising activity and poliovirus type-specific IgA were measured in stool after a monovalent OPV type 2 challenge at 18 weeks of age. Mucosal immunity was measured by in-vitro neutralisation of a type 2 polio pseudovirus (PV2). Neutralisation titres and total and poliovirus-type-specific IgG and IgA concentrations in stools were assessed in samples collected before challenge and 2 weeks after challenge from all participants. FINDINGS: 210 infants from Guatemala and Dominican Republic were included in this analysis. Of 38 infants tested for mucosal antibody in the tOPV group, two were shedding virus 1 week after challenge, compared with 59 of 85 infants receiving bOPV (p<0·0001) and 53 of 87 infants receiving bOPV-IPV (p<0·0001). Mucosal type 2 neutralisation and type-specific IgA were noted primarily in response to tOPV. An inverse correlation was noted between virus shedding and both serum type 2 neutralisation at challenge (p<0·0001) and mucosal type 2 neutralisation at challenge (p<0·0001). INTERPRETATION: Mucosal type-2-specific antibodies can be measured in stool and develop in response to receipt of OPV type 2 either in the primary vaccine series or at challenge. These mucosal antibodies influence the amount of virus that is shed in an established infection. FUNDING: Bill & Melinda Gates Foundation

    Intestinal Immune Responses to Type 2 Oral Polio Vaccine (OPV) Challenge in Infants Previously Immunized With Bivalent OPV and Either High-Dose or Standard Inactivated Polio Vaccine.

    Get PDF
    Background: The impact of inactivated polio vaccines (IPVs) on intestinal mucosal immune responses to live poliovirus is poorly understood. Methods: In a 2014 phase 2 clinical trial, Panamanian infants were immunized at 6, 10, and 14 weeks of age with bivalent oral polio vaccine (bOPV) and randomized to receive either a novel monovalent high-dose type 2-specific IPV (mIPV2HD) or a standard trivalent IPV at 14 weeks. Infants were challenged at 18 weeks with a monovalent type 2 oral polio vaccine (mOPV2). Infants' intestinal immune responses during the 3 weeks following challenge were investigated by measuring poliovirus type-specific neutralization and immunoglobulin (Ig) A, IgA1, IgA2, IgD, IgG, and IgM antibodies in stool samples. Results: Despite mIPV2HD's 4-fold higher type 2 polio D-antigen content and heightened serum neutralization profile, mIPV2HD-immunized infants' intestinal immune responses to mOPV2 challenge were largely indistinguishable from those receiving standard IPV. Mucosal responses were tightly linked to evidence of active infection and, in the 79% of participants who shed virus, robust type 2-specific IgA responses and stool neutralization were observed by 2 weeks after challenge. Conclusions: Enhancing IPV-induced serum neutralization does not substantively improve intestinal mucosal immune responses or limit viral shedding on mOPV2 challenge. Clinical Trials Registration: NCT02111135

    Intestinal antibody responses to a live oral poliovirus vaccine challenge among adults previously immunized with inactivated polio vaccine in Sweden.

    Get PDF
    BACKGROUND: Our understanding of the acquisition of intestinal mucosal immunity and the control of poliovirus replication and transmission in later life is still emerging. METHODS: As part of a 2011 randomised, blinded, placebo-controlled clinical trial of the experimental antiviral agent pocapavir (EudraCT 2011-004804-38), Swedish adults, aged 18-50 years, who had previously received four doses of inactivated polio vaccine (IPV) in childhood were challenged with a single dose of monovalent oral polio vaccine type 1 (mOPV1). Using faecal samples collected before and serially, over the course of 45 days, after mOPV1 challenge from a subset of placebo-arm participants who did not receive pocapavir (N=12), we investigated the kinetics of the intestinal antibody response to challenge virus by measuring poliovirus type 1-specific neutralising activity and IgA concentrations. RESULTS: In faecal samples collected prior to mOPV1 challenge, we found no evidence of pre-existing intestinal neutralising antibodies to any of the three poliovirus serotypes. Despite persistent high-titered vaccine virus shedding and rising serum neutralisation responses after mOPV1 challenge, intestinal poliovirus type 1-specific neutralisation remained low with a titer of ≤18.4 across all time points and individuals. Poliovirus types 1-specific, 2-specific and 3-specific IgA remained below the limit of detection for all specimens collected postchallenge. INTERPRETATION: In contrast to recent studies demonstrating brisk intestinal antibody responses to oral polio vaccine challenge in young children previously vaccinated with IPV, this investigation finds that adults previously vaccinated with IPV have only modest intestinal poliovirus type 1-specific neutralisation and no IgA responses that are measurable in stool samples following documented mOPV1 infection

    Antibody attributes that predict the neutralization and effector function of polyclonal responses to SARS-CoV-2

    Get PDF
    BACKGROUND: While antibodies can provide significant protection from SARS-CoV-2 infection and disease sequelae, the specific attributes of the humoral response that contribute to immunity are incompletely defined. METHODS: We employ machine learning to relate characteristics of the polyclonal antibody response raised by natural infection to diverse antibody effector functions and neutralization potency with the goal of generating both accurate predictions of each activity based on antibody response profiles as well as insights into antibody mechanisms of action. RESULTS: To this end, antibody-mediated phagocytosis, cytotoxicity, complement deposition, and neutralization were accurately predicted from biophysical antibody profiles in both discovery and validation cohorts. These models identified SARS-CoV-2-specific IgM as a key predictor of neutralization activity whose mechanistic relevance was supported experimentally by depletion. CONCLUSIONS: Validated models of how different aspects of the humoral response relate to antiviral antibody activities suggest desirable attributes to recapitulate by vaccination or other antibody-based interventions
    corecore