229 research outputs found

    Computing probabilities of very rare events for Langevin processes: a new method based on importance sampling

    Get PDF
    Langevin equations are used to model many processes of physical interest, including low-energy nuclear collisions. In this paper we develop a general method for computing probabilities of very rare events (e.g. small fusion cross-sections) for processes described by Langevin dynamics. As we demonstrate with numerical examples as well as an exactly solvable model, our method can converge to the desired answer at a rate which is orders of magnitude faster than that achieved with direct simulations of the process in question.Comment: 18 pages + 7 figures, to appear in Nucl.Phys.

    Statistical field theory for simple fluids: the collective variables representation

    Full text link
    An alternative representation of an exact statistical field theory for simple fluids, based on the method of collective variables, is presented. The results obtained are examined from the point of another version of theory that was developed recently by performing a Hubbard-Stratonovich transformation of the configurational Boltzmann factor [J.-M. Caillol, Mol. Phys. 101 (2003) 1617]. The analytical expressions for the pressure and the free energy are derived in two-loop approximation for both versions of theory and it is shown that they are indeed equivalent.The results yield a new type approximation within an untested approximation scheme

    Why is the DNA Denaturation Transition First Order?

    Full text link
    We study a model for the denaturation transition of DNA in which the molecules are considered as composed of a sequence of alternating bound segments and denaturated loops. We take into account the excluded-volume interactions between denaturated loops and the rest of the chain by exploiting recent results on scaling properties of polymer networks of arbitrary topology. The phase transition is found to be first order in d=2 dimensions and above, in agreement with experiments and at variance with previous theoretical results, in which only excluded-volume interactions within denaturated loops were taken into account. Our results agree with recent numerical simulations.Comment: Revised version. To appear in Phys. Rev. Let

    Mol Cell Proteomics

    Get PDF
    Protein biochips have a great potential in future parallel processing of complex samples as a research tool and in diagnostics. For the generation of protein biochips, highly automated technologies have been developed for cDNA expression library production, high throughput protein expression, large scale analysis of proteins, and protein microarray generation. Using this technology, we present here a strategy to identify potential autoantigens involved in the pathogenesis of alopecia areata, an often chronic disease leading to the rapid loss of scalp hair. Only little is known about the putative autoantigen(s) involved in this process. By combining protein microarray technology with the use of large cDNA expression libraries, we profiled the autoantibody repertoire of sera from alopecia areata patients against a human protein array consisting of 37,200 redundant, recombinant human proteins. The data sets obtained from incubations with patient sera were compared with control sera from clinically healthy persons and to background incubations with anti-human IgG antibodies. From these results, a smaller protein subset was generated and subjected to qualitative and quantitative validation on highly sensitive protein microarrays to identify novel alopecia areata-associated autoantigens. Eight autoantigens were identified by protein chip technology and were successfully confirmed by Western blot analysis. These autoantigens were arrayed on protein microarrays to generate a disease-associated protein chip. To confirm the specificity of the results obtained, sera from patients with psoriasis or hand and foot eczema as well as skin allergy were additionally examined on the disease-associated protein chip. By using alopecia areata as a model for an autoimmune disease, our investigations show that the protein microarray technology has potential for the identification and evaluation of autoantigens as well as in diagnosis such as to differentiate alopecia areata from other skin diseases

    Onsager-Machlup theory and work fluctuation theorem for a harmonically driven Brownian particle

    Full text link
    We extend Tooru-Cohen analysis for nonequilirium steady state(NSS) of a Brownian particle to nonequilibrium oscillatory state (NOS) of Brownian particle by considering time dependent external drive protocol. We consider an unbounded charged Brownian particle in the presence of an oscillating electric field and prove work fluctuation theorem, which is valid for any initial distribution and at all times. For harmonically bounded and constantly dragged Brownian particle considered by Tooru and Cohen, work fluctuation theorem is valid for any initial condition(also NSS), but only in large time limit. We use Onsager-Machlup Lagrangian with a constraint to obtain frequency dependent work distribution function, and describe entropy production rate and properties of dissipation functions for the present system using Onsager-Machlup functional.Comment: 6 pages, 1 figur

    What Is the Negative Predictive Value of Multiparametric Magnetic Resonance Imaging in Excluding Prostate Cancer at Biopsy? A Systematic Review and Meta-analysis from the European Association of Urology Prostate Cancer Guidelines Panel

    Get PDF
    Context: It remains unclear whether patients with a suspicion of prostate cancer (PCa) and negative multiparametric magnetic resonance imaging (mpMRI) can safely obviate prostate biopsy. Objective: To systematically review the literature assessing the negative predictive value (NPV) of mpMRI in patients with a suspicion of PCa. Evidence acquisition: The Embase, Medline, and Cochrane databases were searched up to February 2016. Studies reporting prebiopsy mpMRI results using transrectal or transperineal biopsy as a reference standard were included. We further selected for meta-analysis studies with at least 10-core biopsies as the reference standard, mpMRI comprising at least T2-weighted and diffusion-weighted imaging, positive mpMRI defined as a Prostate Imaging Reporting Data System/Likert score of ≄3/5 or ≄4/5, and results reported at patient level for the detection of overall PCa or clinically significant PCa (csPCa) defined as Gleason ≄7 cancer. Evidence synthesis: A total of 48 studies (9613 patients) were eligible for inclusion. At patient level, the median prevalence was 50.4% (interquartile range [IQR], 36.4–57.7%) for overall cancer and 32.9% (IQR, 28.1–37.2%) for csPCa. The median mpMRI NPV was 82.4% (IQR, 69.0–92.4%) for overall cancer and 88.1% (IQR, 85.7–92.3) for csPCa. NPV significantly decreased when cancer prevalence increased, for overall cancer (r = –0.64, p < 0.0001) and csPCa (r = –0.75, p = 0.032). Eight studies fulfilled the inclusion criteria for meta-analysis. Seven reported results for overall PCa. When the overall PCa prevalence increased from 30% to 60%, the combined NPV estimates decreased from 88% (95% confidence interval [95% CI], 77–99%) to 67% (95% CI, 56–79%) for a cut-off score of 3/5. Only one study selected for meta-analysis reported results for Gleason ≄7 cancers, with a positive biopsy rate of 29.3%. The corresponding NPV for a cut-off score of ≄3/5 was 87.9%. Conclusions: The NPV of mpMRI varied greatly depending on study design, cancer prevalence, and definitions of positive mpMRI and csPCa. As cancer prevalence was highly variable among series, risk stratification of patients should be the initial step before considering prebiopsy mpMRI and defining those in whom biopsy may be omitted when the mpMRI is negative. Patient summary This systematic review examined if multiparametric magnetic resonance imaging (MRI) scan can be used to reliably predict the absence of prostate cancer in patients suspected of having prostate cancer, thereby avoiding a prostate biopsy. The results suggest that whilst it is a promising tool, it is not accurate enough to replace prostate biopsy in such patients, mainly because its accuracy is variable and influenced by the prostate cancer risk. However, its performance can be enhanced if there were more accurate ways of determining the risk of having prostate cancer. When such tools are available, it should be possible to use an MRI scan to avoid biopsy in patients at a low risk of prostate cancer

    Resonances in an evolving hole in the swash zone

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of American Society of Civil Engineers for personal use, not for redistribution. The definitive version was published in Journal of Waterway, Port, Coastal, and Ocean Engineering 138 (2012): 299–302, doi:10.1061/(ASCE)WW.1943-5460.0000136.Water oscillations observed in a 10-m diameter, 2-m deep hole excavated on the foreshore just above the low-tide line on an ocean beach are consistent with theory. When swashes first filled the initially circular hole on the rising tide, the dominant mode observed in the cross-shore velocity was consistent with a zero-order Bessel function solution (sloshing back and forth). As the tide rose and swash transported sediment, the hole diameter decreased, the water depth inside the hole remained approximately constant, and the frequency of the sloshing mode increased according to theory. About an hour after the swashes first reached the hole, it had evolved from a closed circle to a semi-circle, open to the ocean. When the hole was nearly semi-circular, the observed cross-shore velocity had two spectral peaks, one associated with the sloshing of a closed circle, the other associated with a quarter-wavelength mode in an open semi-circle, both consistent with theory. As the hole evolved further toward a fully semi-circular shape, the circular sloshing mode decreased, while the quarter-wavelength mode became dominant.The Office of Naval Research, a National Security Science and Engineering Faculty Fellowship, a National Science Foundation Career award, and a National Defense Science and Engineering Graduate Fellowship provided support

    Integration of radiation oncology teaching in medical studies by German medical faculties due to the new licensing regulations: an overview and recommendations of the consortium academic radiation oncology of the German Society for Radiation Oncology (DEGRO)

    Get PDF
    The new Medical Licensing Regulations 2025 (Ärztliche Approbationsordnung, ÄApprO) will soon be passed by the Federal Council (Bundesrat) and will be implemented step by step by the individual faculties in the coming months. The further development of medical studies essentially involves an orientation from fact-based to competence-based learning and focuses on practical, longitudinal and interdisciplinary training. Radiation oncology and radiation therapy are important components of therapeutic oncology and are of great importance for public health, both clinically and epidemiologically, and therefore should be given appropriate attention in medical education. This report is based on a recent survey on the current state of radiation therapy teaching at university hospitals in Germany as well as the contents of the National Competence Based Learning Objectives Catalogue for Medicine 2.0 (Nationaler Kompetenzbasierter Lernzielkatalog Medizin 2.0, NKLM) and the closely related Subject Catalogue (Gegenstandskatalog, GK) of the Institute for Medical and Pharmaceutical Examination Questions (Institut fĂŒr Medizinische und Pharmazeutische PrĂŒfungsfragen, IMPP). The current recommendations of the German Society for Radiation Oncology (Deutsche Gesellschaft fĂŒr Radioonkologie, DEGRO) regarding topics, scope and rationale for the establishment of radiation oncology teaching at the respective faculties are also included

    Hypofractionated radiotherapy for prostate cancer

    Get PDF
    In the last few years, hypofractionated external beam radiotherapy has gained increasing popularity for prostate cancer treatment, since sufficient evidence exists that prostate cancer has a low alpha/beta ratio, lower than the one of the surrounding organs at risk and thus there is a potential therapeutic benefit of using larger fractionated single doses. Apart from the therapeutic rationale there are advantages such as saving treatment time and medical resources and thereby improving patient's convenience. While older trials showed unsatisfactory results in both standard and hypofractionated arm due to insufficient radiation doses and non-standard contouring of target volumes, contemporary randomized studies have reported on encouraging results of tumor control mostly without an increase of relevant side effects, especially late toxicity. Aim of this review is to give a detailed analysis of relevant, recently published clinical trials with special focus on rationale for hypofractionation and different therapy settings
    • 

    corecore