292 research outputs found

    The impact of Scotland‟s economy on the environment : a note on input-output and ecological footprint analysis

    Get PDF
    Several recent papers examining the impact of the Scottish and Jersey economy on the environment have criticised the Ecological Footprint (EF) method and have suggested the use of input-output (IO) analysis instead (McGregor et al., 2004a; McGregor et al., 2004b; Ferguson et al., 2004; Allan et al., 2004). It is argued that “IO can be used to provide a coherent and practical alternative method to the Ecological Footprint of locating the responsibility and source of resource use and waste/pollution” (Allan et al., 2004) and several aspects of the EF methodology are criticised specifically. In this paper we reply to these critiques and discuss the scope and limitations of both the NCLAS as well as the Ecological Footprint. We argue that EF and IO are complementary methods that can be combined in a meaningful way. We suggest a way forward that helps to improve the scientific understanding of key sustainable development issues

    Evidence of decoupling consumption-based CO<sub>2</sub> emissions from economic growth

    Get PDF
    Decoupling economic growth from resource use and emissions is a precondition to stay within planetary boundaries. A number of countries have achieved a reduction in their production-based emissions in the past decade. However, the decline in PBE has often been achieved via outsourcing of emissions to other countries, which may even lead to higher emissions globally. Therefore, a consumption-based perspective that accounts for a country's emissions along global supply chains should also be employed when investigating progress in decoupling. Here we investigate the progress countries made in reducing their production-based and consumption-based emissions despite growth in gross domestic product (GDP). We found that 32 out of 116 countries (mainly developed ones) achieved absolute decoupling between GDP and production-based emissions in recent years (2015–2018), and 23 countries achieved absolute decoupling between GDP and consumption-based emissions. 14 countries have decoupled GDP growth from both production- and consumption-based emissions. Even countries that have achieved absolute decoupling are still adding emissions to the atmosphere thus showing the limits of ‘green growth’ and the growth paradigm. We also observed that decoupling can be temporary, and decoupled countries may switch back to increasing emissions, which means that continuous efforts are needed to maintain decoupling. An analysis of driving factors shows that whether a country can achieve decoupling mainly depends on reducing emission intensity along domestic and import supply chains. This highlights the importance of decarbonizing supply chains and international collaboration in controlling emissions

    Evidence of decoupling consumption-based CO<sub>2</sub> emissions from economic growth

    Get PDF
    Decoupling economic growth from resource use and emissions is a precondition to stay within planetary boundaries. A number of countries have achieved a reduction in their production-based emissions in the past decade. However, the decline in PBE has often been achieved via outsourcing of emissions to other countries, which may even lead to higher emissions globally. Therefore, a consumption-based perspective that accounts for a country's emissions along global supply chains should also be employed when investigating progress in decoupling. Here we investigate the progress countries made in reducing their production-based and consumption-based emissions despite growth in gross domestic product (GDP). We found that 32 out of 116 countries (mainly developed ones) achieved absolute decoupling between GDP and production-based emissions in recent years (2015–2018), and 23 countries achieved absolute decoupling between GDP and consumption-based emissions. 14 countries have decoupled GDP growth from both production- and consumption-based emissions. Even countries that have achieved absolute decoupling are still adding emissions to the atmosphere thus showing the limits of ‘green growth’ and the growth paradigm. We also observed that decoupling can be temporary, and decoupled countries may switch back to increasing emissions, which means that continuous efforts are needed to maintain decoupling. An analysis of driving factors shows that whether a country can achieve decoupling mainly depends on reducing emission intensity along domestic and import supply chains. This highlights the importance of decarbonizing supply chains and international collaboration in controlling emissions.</p

    An inclusive city water account by integrating multiple data sources for South-East Queensland (SEQ), Australia

    Full text link
    Cities are the hotspots of impacts on local and distant water resources through economic activity and consumption. More than half of the world's population lives in cities, which is expected to reach around two-thirds by 2050. Such a high level of increased urbanization calls for higher attention towards inclusive, safe, resilient, and sustainable cities (Sustainable Development Goals 11). To evaluate sustainability, inclusiveness, and resiliency pathways, a variety of sustainability indicators have been proposed, including the water footprint. The water footprint is defined as the total volume of freshwater used for the goods and services consumed. It covers both direct (e.g. drinking and cleaning) and virtual water flows (water used in the goods and services supply chain, hence also known as embedded water). Virtual water flows through products and services produced in other locations using their water resources influence the function, prosperity, and growth of the cities. Yet, this aspect is absent in the sustainability and strategic city water footprint reduction goals of Australian cities. To fully account for the water dependencies of Australian cities, direct and virtual water flows need to be known. To this purpose, we build inclusive city water of South-East Queensland (SEQ) by combining material flow analysis (MFA) and the multiregional input-output (MRIO) model. Water consumption in SEQ is used to quantify the water footprint on local water resources and net blue virtual water import. Together, this constitutes the water footprint on national water resources. Our results show that the water footprint of SEQ on local water resources is 620 GL with a net virtual water import of 1382 GL. Therefore, the water footprint of SEQ on national water resources is 2002 GL. The water footprint of SEQ on local water resources consists of direct water consumption by households (192 GL) and the industrial sector (428 GL). The consumed direct water of the SEQ industrial sector flows as virtual water to SEQ (149 GL), the rest of Australia (RoAUS) (all other regions except SEQ) (211 GL), and the rest of the world (68 GL). The virtual water inflows breakdown by source regions showed that 386 GL, 1019 GL, and 256 GL of virtual water imported from the major cities (Sydney, Melbourne, Adelaide, and Perth); regional areas of NSW, Victoria, and QLD; and RoAUS, respectively. Overall, the proposed inclusive city water account can enhance subnational estimates of city water footprint for benchmarking, as well as inclusive and resilient city water planning

    What can we learn from consumption-based carbon footprints at different spatial scales? Review of policy implications

    Get PDF
    Background: Current climate change mitigation policies, including the Paris Agreement, are based on territorial greenhouse gas (GHG) accounting. This neglects the understanding of GHG emissions embodied in trade. As a solution, consumption-based accounting (CBA) that reveals the lifecycle emissions, including transboundary flows, is gaining support as a complementary information tool. CBA is particularly relevant in cities that tend to outsource a large part of their production-based emissions to their hinterlands. While CBA has so far been used relatively little in practical policymaking, it has been used widely by scientists. Methods and design: The purpose of this systematic review, which covers more than 100 studies, is to reflect the policy implications of consumption-based carbon footprint (CBCF) studies at different spatial scales. The review was conducted by reading through the discussion sections of the reviewed studies and systematically collecting the given policy suggestions for different spatial scales. We used both numerical and qualitative methods to organize and interpret the findings of the review. Review results and discussion: The motivation for the review was to investigate whether the unique consumption perspective of CBA leads to similarly unique policy features. We found that various carbon pricing policies are the most widely supported policy instrument in the relevant literature. However, overall, there is a shortage of discussion on policy instruments, since the policy discussions focus on policy outcomes, such as behavioral change or technological solutions. In addition, some policy recommendations are conflicting. Particularly, urban density and compact city policies are supported by some studies and questioned by others. To clarify the issue, we examined how the results regarding the relationship between urban development and the CBCF vary. The review provides a concise starting point for policymakers and future research by summarizing the timely policy implications.Peer reviewe

    2012. Input-Output Scenario Analysis - Using constrained optimisation to integrate dynamic model outputs

    Get PDF
    Abstract Australia faces significant sustainability challenges in the context of climate change, economic growth, population pressures, and increasing resource scarcity. To provide a systematic and integrated analysis of Australia&apos;s future development CSIRO is building up and integrating analytical capacity across different science domains. Environmentally extended input-output analysis is one of the techniques to be used for assessing scenarios of future economic and urban development in Australia and to be integrated with other integrated assessment models (IAM) such as a climate/economic systems model, a stocks-and-flows model, a land-use model and an energy sector model. In this paper we describe the process of generating historic and future time series of environmentally extended multi-state input-output tables of the Australia economy (AUS-MRIO). We use the software tool AISHA which was created for the purpose of building series of contingency tables (for example input-output matrices with environmental extensions). The software operates a matrix balancing algorithm and solves a constrained optimisation problem. Creating a time series of input-output tables involves preparing initial estimates, defining and scripting constraints, and setting appropriate boundary conditions. AISHA will not only be used to update an existing AUS-MRIO from 1999 to 2008, but also to implement scenario variables derived from other IAM models as exogenous constraints. Effectively, this creates a dynamically extended version of AUS-MRIO linked to defined scenario pathways. The novelty of our work lies in the cross-model integration of scenario variables by implementing a mechanism to use these variables as data constraints in future time series of IO tables. Application of the dynamically extended IO tool in (urban) sustainability analyses adds the perspective of consumption-based environmental accounting to integrated assessment modelling

    Review on City-Level Carbon Accounting

    Get PDF
    Carbon accounting results for the same city can differ due to differences in protocols, methods, and data sources. A critical review of these differences and the connection among them can help to bridge our knowledge between university-based researchers and protocol practitioners in accounting and taking further mitigation actions. The purpose of this study is to provide a review of published research and protocols related to city carbon accounting, paying attention to both their science and practical actions. To begin with, the most cited articles in this field are identified and analyzed by employing a citation network analysis to illustrate the development of city-level carbon accounting from three perspectives. We also reveal the relationship between research methods and accounting protocols. Furthermore, a timeline of relevant organizations, protocols, and projects is provided to demonstrate the applications of city carbon accounting in practice. The citation networks indicate that the field is dominated by pure-geographic production-based and community infrastructure-based accounting; however, emerging models that combine economic system analysis from a consumption-based perspective are leading to new trends in the field. The emissions accounted for by various research methods consist essentially of the scope 1–3, as defined in accounting protocols. The latest accounting protocols include consumption-based accounting, but most cities still limit their accounting and reporting from pure-geographic production-based and community infrastructure-based perspectives. In conclusion, we argue that protocol practitioners require support in conducting carbon accounting, so as to explore the potential in mitigation and adaptation from a number of perspectives. This should also be a priority for future studies

    Consumption-based material flow indicators - Comparing six ways of calculating the Austrian raw material consumption providing six results

    Get PDF
    Understanding the environmental implications of consumption and production depends on appropriate monitoring tools. Material flow accounting (MFA) is a method to monitor natural resource use by countries and has been widely used in research and policy. However, the increasing globalization requires the consideration of "embodied" material use of traded products. The indicator raw material consumption (RMC) represents the material use - no matter where in the world it occurs - associated with domestic final demand. It provides a consumption-based perspective complementary to the MFA indicators that have a territorial focus. Several studies on RMC have been presented recently but with diverging results; hence, a better understanding of the underlying differences is needed. This article presents a comparison of Austrian RMC for the year 2007 calculated by six different approaches (3 multi-regional input-output (MRIO) and 3 hybrid life-cycle analysis-IO approaches). Five approaches result in an RMC higher than the domestic material consumption (DMC). One hybrid LCA-IO approach calculates RMC to be lower than DMC. For specific material categories, results diverge by 50% or more. Due to the policy relevance of the RMC and DMC indicators it is paramount that their robustness is enhanced, which needs both data and method harmonization
    • 

    corecore