323 research outputs found

    Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system

    Get PDF
    Tipping points associated with bifurcations (B-tipping) or induced by noise (N-tipping) are recognized mechanisms that may potentially lead to sudden climate change. We focus here a novel class of tipping points, where a sufficiently rapid change to an input or parameter of a system may cause the system to "tip" or move away from a branch of attractors. Such rate-dependent tipping, or R-tipping, need not be associated with either bifurcations or noise. We present an example of all three types of tipping in a simple global energy balance model of the climate system, illustrating the possibility of dangerous rates of change even in the absence of noise and of bifurcations in the underlying quasi-static system.Comment: 20 pages, 8 figure

    Parameter shifts for nonautonomous systems in low dimension: Bifurcation- and Rate-induced tipping

    Get PDF
    We discuss the nonlinear phenomena of irreversible tipping for non-autonomous systems where time-varying inputs correspond to a smooth "parameter shift" from one asymptotic value to another. We express tipping in terms of pullback attraction and present some results on how nontrivial dynamics for non-autonomous systems can be deduced from analysis of the bifurcation diagram for an associated autonomous system where parameters are fixed. In particular, we show that there is a unique local pullback point attractor associated with each linearly stable equilibrium for the past limit. If there is a smooth stable branch of equilibria over the range of values of the parameter shift, the pullback attractor will remain close to (track) this branch for small enough rates, though larger rates may lead to rate-induced tipping. More generally, we show that one can track certain stable paths that go along several stable branches by pseudo-orbits of the system, for small enough rates. For these local pullback point attractors, we define notions of bifurcation-induced and irreversible rate-induced tipping of the non-autonomous system. In one-dimension, we give a number of sufficient conditions for the presence or absence of rate-induced tipping, and we discuss some applications of our results to give criteria for irreversible rate-induced tipping in a conceptual climate model example

    Entwicklung eines ladungsempfindlichen Vorverstärkers zur Auslese von Lawinenfotodioden

    Get PDF
    Gegenstand dieser Arbeit ist die Entwicklung, der Aufbau und die Charakterisierung sowie Messung einer anwendungsspezifischen integrierten Schaltung (engl.: Application Specific Integrated Circuit, ASIC). Sie dient der Auslese der im elektromagnetischen Kalorimeter des PANDA-Experiments eingesetzten Lawinenfotodioden. Jeder Auslesekanal beinhaltet in der Eingangsstufe einen ladungsempfindlichen Vorverstärker, gefolgt von einem Pulsformer sowie zwei Ausgangstreibern. Am Beginn der Entwicklung steht die Machbarkeitsstudie einer integrierten Ausleseelektronik, welche die anspruchsvollen Anforderungen des PANDA-Experiments erfüllt. Aus rauschtheoretischen Untersuchungen resultieren erste Entwurfsparameter für die Schaltung, die mit Hilfe umfangreicher Simulationen verbessert und ergänzt werden. Die technische Umsetzung der Schaltung erfolgt in einem 0,35 Micrometer-CMOS-Prozess der Firma Austria Mikrosysteme. Die Charakterisierung der integrierten Ausleseelektronik ergibt bei einer Umgebungstemperatur von T = - 20° C eine Shapingzeit des Signalpulses von tr = (124 ± 2) ns. Mit dem äquivalenten Rauschwert von ENC = (4456 ± 35) e- und einer maximal möglichen Eingangsladung von 7,84 pC folgt ein dynamischer Bereich von über 10 000. Der ratenunabhängige Leistungsbedarf eines einzelnen Auslesekanals beträgt P = (52, 4 ± 0, 2)mW. Damit erfüllt der in dieser Arbeit beschriebene ASIC Prototyp alle Anforderungen, die vom Experiment an die Ausleseelektronik gestellt werden.This dissertation describes the development, assembling as well as the following characterisation and measurements of the application specific integrated circuit (ASIC) for the readout of the avalanche photodiodes which will be used in the electromagnetic calorimeter of the PANDA experiment. Every readout channel consists of a charge sensitive amplifier, a shaper stage and two output drivers. The development starts with studies of the feasibility of the integrated circuit. It is evaluated by means of the noise theory to decide whether the circuit fulfills the demanding requirements of the PANDA experiment. From this evaluation point first design parameters results for the circuit and are improved and completed by extensive simulations. The technical implementation of the circuit design is realized in the 0.35 micrometer CMOS process by Austria Microsystems. The characterisation of the integrated circuit at a temperature of T = - 20° C results in a shaping time of tr = (124 ± 2) ns. With an equivalent noise charge of ENC = (4456 ± 35) e- and a maximum input charge of 7.84 pC a dynamic range of over 10 000 follows. The event rate independent power requirement of one readout channel is measured to P = (52.4 ± 0.2)mW. The designed ASIC prototype fulfills all specifications required by the experiment readout electronic. Especially the results for the equivalent noise charge are distinguished as well as the large dynamic range the chip presents

    Rate-induced tipping in natural and human systems

    Get PDF
    Over the last two decades, tipping points have become a hot topic due to the devastating consequences that they may have on natural and human systems. Tipping points are typically associated with a system bifurcation when external forcing crosses a critical level, causing an abrupt transition to an alternative, and often less desirable, state. The main message of this review is that the rate of change in forcing is arguably of even greater relevance in the human-dominated anthropocene, but is rarely examined as a potential sole mechanism for tipping points. Thus, we address the related phenomenon of rate-induced tipping: an instability that occurs when external forcing varies across some critical rate, usually without crossing any bifurcations. First, we explain when to expect rate-induced tipping. Then, we use three illustrating examples of differing complexity to highlight universal and generic properties of rate-induced tipping in a range of natural and human systems.</p

    Hallmarks of mechanochemistry: From nanoparticles to technology

    Get PDF
    The aim of this review article on recent developments of mechanochemistry (nowadays established as a part of chemistry) is to provide a comprehensive overview of advances achieved in the field of atomistic processes, phase transformations, simple and multicomponent nanosystems and peculiarities of mechanochemical reactions. Industrial aspects with successful penetration into fields like materials engineering, heterogeneous catalysis and extractive metallurgy are also reviewed. The hallmarks of mechanochemistry include influencing reactivity of solids by the presence of solid-state defects, interphases and relaxation phenomena, enabling processes to take place under non-equilibrium conditions, creating a well-crystallized core of nanoparticles with disordered near-surface shell regions and performing simple dry time-convenient one-step syntheses. Underlying these hallmarks are technological consequences like preparing new nanomaterials with the desired properties or producing these materials in a reproducible way with high yield and under simple and easy operating conditions. The last but not least hallmark is enabling work under environmentally friendly and essentially waste-free conditions (822 references).Slovak Grant Agency VEGA 2/0009/11, 2/0043/11Slovak Agency for Science and Development APVV VV-0189-10, VV-0528-11Russian Foundation for Basic Research 10-03-00942a, 12-03-00651aMinistry of Science and Higher education in Poland CUT/c-1/DS/KWC/2008-2012, PB1T09B02330, NN209145136, NN20914893

    Synchronisation vs. resonance: Isolated resonances in damped nonlinear oscillators

    Get PDF
    We describe differences between synchronisation and resonance, and analyse different types of nonlinear resonances in a weakly damped Duffing oscillator using bifurcation theory techniques. In addition to previously reported (i) odd subharmonic resonances found on the primary branch of symmetric periodic solutions with the forcing frequency and (ii) even subharmonic resonances due to symmetry-broken periodic solutions that bifurcate off the primary branch and also oscillate at the forcing frequency, we uncover (iii) novel resonance type due to isolas of periodic solutions that are not connected to the primary branch. These occur between odd and even resonances, oscillate at a fraction of the forcing frequency, and give rise to a complicated resonance ‘curve’ with disconnected elements and high degree of multistability. We use bifurcation continuation to compute resonance tongues in the plane of the forcing frequency vs. the forcing amplitude for different but fixed values of the damping rate. Our analysis shows that identified here isolated resonances explain the intriguing “intermingled tongues” that were observed for weak damping and misinterpreted as (synchronisation) Arnold tongues in Paar and Pavin (1998). What is more, isolated resonances link “intermingled tongues” to a seemingly unrelated phenomenon of “bifurcation superstructure” described for moderate damping in Parlitz and Lauterborn (1985)

    Psühholoogia vanglaametnikele : üldine vanglateenistus

    Get PDF
    Sisekaitseakadeemia e-väljaannehttp://tartu.ester.ee/record=b2550485~S1*es

    Registration of supine MR mammography with breast ultrasound for surgical planning of breast conserving surgery: a feasibility study

    Get PDF
    Purpose To report the feasibility, accuracy and initial clinical experience of the use of real-time magnetic resonance navigated ultrasound (rtMRnUS) in the surgical planning of breast-conserving surgery (BCS) via guide wire insertion. Materials and Methods 29 participants were recruited into this prospective ethics committee approved study. The first 4 cases were utilized as a training set. Participants underwent a supine contrast-enhanced breast MR examination with external fiducials and corresponding ink marks placed on the skin of the affected breast to act as co-registration pairs. MR examinations included both functional and morphological images. A LOGIQ E9 ultrasound system (GE Healthcare, Milwaukee, WI, USA) equipped with a 6 - 15 MHz transducer was utilized for rtMRnUS. To facilitate point co-registration of the previously acquired MR dataset with the real-time ultrasound, co-registration pairs were identified on both imaging modalities. The following co-registration quality metrics were recorded: root mean square deviation (RMSD), lesion and global accuracies. Post co-registration guide wire insertion was performed. Results Co-registration was successfully undertaken in all participants. Results from 25 participants are presented. The median (min, max) RMSD was 3.3 mm (0.6 mm, 8.8 mm). The global accuracy was assessed as very good (8), good (12), moderate (3) and poor (2) while the median (min, max) lesion accuracy was recorded at 8.9 mm (2.1 mm, 33.2 mm). Conclusion The use of rtMRnUS to facilitate guide wire insertion is a feasible technique. Generally, very good or good global registration can be expected. Lesion accuracy results indicate that a median difference, in 3 D space, of 9 mm can be expected between imaging modalities

    The Effect of Caffeic Acid Phenethyl Ester (CAPE) on H2O2-Induced Oxidative Stress in Cultured H9c2 Cells Compared to Common Antioxidants

    Get PDF
    Caffeic Acid Phenethyl Ester (CAPE) is a natural compound that has previously exhibited anti-proliferative, anti-inflammation and antioxidant activities. However, CAPE’s effects have not been fully elucidated in myoblasts under oxidative stress. We compared the effects of 24 hour pretreatment of CAPE to several known antioxidants (caffeic acid, vitamin C, and trolox) in H9c2 cells following oxidative injury by hydrogen peroxide (H2O2). H9c2 cells incubated with H2O2 treatment (100-700 μM, n=4) for 24 hours dose-dependently reduced cell viability (assessed by a cell counting assay). Compared to the reduction in viability from H2O2 500 μM treatment (22 ± 4%), H9c2 cell viability was significantly restored by pretreatment of CAPE (at 10 μM (100 ± 25%); 20 μM (112 ± 15%); 40 μM (109 ± 15%) n=5, p\u3c0.001) and Trolox (at 50 μM (83 ± 10%); 100 μM (89 ± 8%) n=4, p\u3c0.001). In contrast, pretreatment of H9c2 cells with caffeic acid (1-80 μM, n=3) and vitamin C (1000-10,000 μM, n=3) did not restore cell viability following H2O2-induced injury. CAPE’s mechanism was further investigated by measuring reactive oxygen species via a dichlorofluorescin diacetate assay and by evaluating heme oxygenase-1 (HO-1) expression via western blot. Increases in ROS caused by H2O2 500 μM (239 ± 30% of control, n=3) were significantly restored to control by pretreatment of CAPE dose-dependently (n=3, p\u3c0.001). Moreover, CAPE dose-dependently increased HO-1 expression (n=3). These results suggest CAPE can mitigate oxidative stress in H9c2 cells which may involve the induction of HO-1
    corecore