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Abstract

Tipping points associated with bifurcations (B-tipping) or induced by
noise (N-tipping) are recognized mechanisms that may potentially lead
to sudden climate change. We focus here a novel class of tipping points,
where a sufficiently rapid change to an input or parameter of a system may
cause the system to “tip” or move away from a branch of attractors. Such
rate-dependent tipping, or R-tipping, need not be associated with either
bifurcations or noise. We present an example of all three types of tipping
in a simple global energy balance model of the climate system, illustrating
the possibility of dangerous rates of change even in the absence of noise
and of bifurcations in the underlying quasi-static system.

Keywords: Rate-dependent tipping point, bifurcation, climate system

1 Tipping points - not just bifurcations

In the last few years, the idea of “tipping points” has caught the imagination in
climate science with the possibility, also indicated by both palaeoclimate data
and global climate models, that the climate system may abruptly “tip” from
one regime to another in a comparatively short time.1

This recent interest in tipping points is related to a long-standing question
in climate science: to understand whether climate fluctuations and transitions
between different “states” are due to external causes (such as variations in
the insolation or orbital parameters of the Earth) or to internal mechanisms
(such as oceanic and atmospheric feedbacks acting on different timescales). A
famous example is Milankovich theory, according to which these transitions are

1NB This version of the paper includes a correction to Section 2.1.
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forced by an external cause, namely the periodic variations in the Earth’s orbital
parameters (see e.g. [11]). Remarkably, the evidence in favour of Milankovich
theory still remains controversial, see e.g. [21].

Hasselmann [10] was one of the first to tackle this question through simple
climate models obtained as stochastically perturbed dynamical systems. He ar-
gued that the climate system can be conceptually divided into a fast component
(the “weather”, essentially corresponding to the evolution of the atmosphere)
and a slow component (the “climate”, that is the ocean, cryosphere, land vege-
tation, etc.). The “weather” would act as an essentially random forcing exciting
the response of the slow “climate”. In this way, short-time scale phenomena,
modelled as stochastic perturbations, can be thought of as driving long-term
climate variations. This is what we refer to as noise-induced tipping.

Sutera [23] studies noise-induced tipping in a simple global energy balance
model previously derived by Fraedrich [8]. Sutera’s results indicate a character-
istic time of 105yr for the the random transitions between the “warm” and the
“cold” climate states, which matches well with the observed average value. One
shortcoming is that this analysis leaves open the question as to the periodicity
of such transitions indicated by the power spectral analysis [19, Fig. 7].

There is a considerable literature on noise-induced escape from attractors in
stochastic models [9]. These have successfully been used for modelling changes in
climate phenomena [22], although authors do not always use the word “tipping”
and other aspects have been examined. For example, Kondepudi et al [13]
consider the combined effect of noise and parameter changes on the related
problem of “attractor selection” in a noisy system.

More recently, bifurcation-driven tipping points or dynamic bifurcations [3]
have been suggested as an important mechanism by which sudden changes in
the behaviour of a system may come about. For example, Lenton et al [16, 17]
conceptualize this as an open system

dx

dt
= f(x, λ(t)) (1)

where λ(t) is in general a time-varying input. In the case that λ is constant,
we refer to (1) as the parametrized system with parameter λ, and to its stable
solution as the quasi-static attractor. If λ(t) passes through a bifurcation point of
the parametrized system where a quasi-static attractor (such as an equilibrium
point x̃(λ)) loses stability, it is intuitively clear that a system may “tip” directly
as a result of varying that parameter, though in certain circumstances the effect
may be delayed because of well-documented slow passage through bifurcation
effects [2]. Related to this, Dakos et al [4] have proposed that tipping points are
recognizable and to some extent predictable. They propose a method to de-trend
signals and then, examining the correlation of fluctuations in the detrended
signal, they find a signature of bifurcation-induced tipping points. These papers
have concentrated on systems where equilibrium solutions for the parametrised
system lose stability, although recent work of Kuehn [15] considers tipping effects
in general two timescale systems as occasions where there is a bifurcation of the
fast dynamics.
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The explanation of climate tipping as a phenomenon purely induced by bi-
furcations has been called into question. For example, Ditlevsen and Johnsen [5]
suggest that the predictive techniques to forecast a forthcoming tipping point [4]
are not always reliable. Indeed, noise alone can drive a system to tipping with-
out any bifurcation. Nonetheless, it seems that the ideas of bifurcation-induced
tipping can give practically useful predictions, for example in detecting potential
ecosystem population collapses [6].

In their review paper, Thompson and Sieber [26] discuss bifurcation- and
noise-induced mechanisms for tipping. They examine stochastically forced sys-
tems

dx = f(x, λ(t))dt + g(x)dW (2)

where W represents a Brownian motion. Using generic bifurcation theory, they
distinguish between safe bifurcations (where an attracting state loses stability
but is replaced by another “nearby” attractor), explosive bifurcations (where the
attractor dynamics explores more of phase space but still returns to near the
old attractor) and dangerous bifurcations (where the attractor dyamics after
bifurcation are unrelated to what has gone before). In [25], Thompson and
Sieber clarify that a timeseries analysis of bifurcation-induced tipping point
near a quasi-static equilibrium (QSE) relies on a separation of timescales

κdrift ≪ κcrit ≪ κstab (3)

where κdrift is the average drift rate of parameters, κcrit is the decay rate for
the slowest decaying mode of the QSE and κstab are the remaining (faster de-
caying) modes. However, it is not easy to define κdrift in general (especially in
a coordinate-independent manner) and there is no a priori reason for inequality
(3) to hold for a given system.

Rate-dependent tipping has not previously been discussed in detail, but it
has been identified in [28] as an important tipping mechanism that cannot be
explained by previously proposed mechanisms (i.e. noise or bifurcations of a
quasi-static attractor). This paper aims to better understand the phenomenon
of rate-dependent tipping by introducing a linear model with a tipping radius
and discussing three basic examples where this type of tipping appears.

We suggest that tipping effects in open systems can be usefully split into
three categories:

• “B-tipping” where the output from an open system changes abruptly or
qualitatively due to a bifurcation of a quasi-static attractor.

• “N-tipping” where noisy fluctuations result in the system departing from
a neighbourhood of a quasi-static attractor.

• “R-tipping” where the system fails to track a continuously changing quasi-
static attractor.

We demonstrate that each mechanism on its own can produce a tipping re-
sponse. Furthermore, any open system may exhibit tipping phenomena that
result from a combination of several of the above.
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y=g(x,y,ξ(t))
.

x=f(x,λ(y))
.

xλ(y)
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(a) (b)
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Figure 1: The system (x, y) in (a) represents a (high dimensional) open system
with inputs ξ(t). We identify a low dimensional but nonlinear subsystem x
forced by some “observables” λ(y) from the high dimensional system. The be-
haviour of x in (a) can be partially understood by examining the open subsystem
(b) for a suitable class of temporal forcing λ(t).

The paper is organized as follows; in the remainder of this section we discuss
a setting for open systems allowing discussion of the three types of tipping
phenomena. In Section 2 we formulate a criterion for R-tipping. In Section 3
we discuss three illustrative low dimensional examples of R-tipping; two related
to bifurcation normal forms and one for a slow-fast system. Section 4 gives an
illustrative examples of all three types of tipping for an energy-balance model
of the global climate for different parameter regimes. Section 5 concludes with
a discussion and some open questions.

1.1 Towards a general theory of tipping in open systems

Dynamical systems theory has developed a wide-ranging corpus of results con-
centrated on the behaviour of autonomous finite dimensional deterministic sys-
tems - often called closed systems, because their future time trajectories depend
only on the current state of the system. If the systems have inputs that can
change the fate of system trajectories then we say the system is open. Real-
world systems are never closed except to some degree of approximation, and a
range of methods have been developed to cope with the fact that they are open:
(a) One can view external perturbations as time variation of parameters that
would be fixed for a closed system. (b) There are various theoretical approaches
to stochasticity in systems, either intrinsic or external. (c) Control theory al-
lows one to design inputs to control a system’s outputs in a desired way, given
(possibly imperfect) knowledge of the system.

In Fig. 1(a) we illustrate an arbitrary high dimensional system where we
have identified a low dimensional subsystem that we wish to check for “tipping
effects”. We do this by analysing the response of an open system (1) in Fig. 1(b)
to possible time-varying inputs λ(t). Fig. 2 shows some possible candidates for
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Figure 2: Candidate inputs λ(t) in the subsystem (1). These may include
noise- and signal-like components as in (a), or purely deterministic smooth in-
puts/parameter variations as in (b,c). Tipping responses in the subsystem may
occur in response to noise fluctuations (N-tipping), to passing through a bifur-
cation point for the parametrized subsystem λ = λ0 (B-tipping) or as a result
of too rapid variation (R-tipping).

the input λ(t); we are interested in classifying those inputs that lead to a sudden
change in x. This “tipping” may depend on details of the noise (N-tipping), may
involve passing through a critical value of λ(t) corresponding to a bifurcation
(B-tipping) of the parametrized subsystem or may depend on the rate of change
of λ(t) along some path in parameter space (R-tipping).

2 R-tipping: a linear model

We use a simple model to explore R-tipping and to give sufficient conditions such
that R-tipping does/does not occur. Suppose that the system (1) for x ∈ Rn

and parameter λ has a quasi-static equilibrium (QSE) x̃(λ) with a tipping radius
R > 0. For some initial x0 with |x0 − x̃(λ)| < R we assume that the evolution
of x with time is given by

dx

dt
= M(x− x̃(λ)) for |x− x̃(λ)| < R (4)

where M is a fixed stable linear operator (i.e. |eMt| → 0 as t → ∞). More
generally, we consider a time varying parameter, λ(t), that represents the input
to the subsystem. If |x(t) − x̃(λ(t))| < R then we say that x(t) tracks (or
adiabatically follows) the QSE x̃(λ). If there is a t0 such that |x(t0)−x̃(λ(t0))| =
R then we say the solution tips (adiabatic approximation fails) at t0 and regard
the model as unphysical beyond this point in time. The tipping radius may be
related to the basin of attraction boundary for the nonlinear problem (1), as is
the case in Sec. 3(a,b), but it need not be, as is the case in Sec. 3(c) and [28].
System (4) shows only R-tipping - because M is fixed there is no bifurcation
in the system and no noise is present. Clearly the model can be generalised to
include M and R that vary with λ(t), and/or nonlinear terms. Equation (4)
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can be solved with initial condition x(0) = x0 to give

x(t) = eMtx0 −
∫ t

s=0

eM(t−s)Mx̃(λ(s)) ds.

If we assume that the solution is modelled by the linear system near the QSE
for an arbitrarily long past and set u = t − s then the dependence on initial
value decays to give

x(t) = −
∫ ∞

u=0

eMuMx̃(λ(t − u)) du. (5)

Assuming that M is invertible and exponentially stable (more precisely, we
assume that |eMtM−kv| → 0 as t → 0 for k = 1, 2) and that the rate of motion
of the QSE and parameter are bounded (more precisely, the derivatives dlx̃/dλl

and dlλ/dtl for l = 1, 2 are bounded in time) then (5) can be integrated by parts
to give

x(t) = −
[

eMux̃(λ(t− u))
]∞

0
−
∫ ∞

0

eMu dx̃

dt
(λ(t− u)) du

and so

x(t) − x̃(λ(t)) = −
∫ ∞

0

eMu dx̃

dt
(λ(t − u)) du. (6)

Integrating again by parts gives

x(t)− x̃(t) = M−1 dx̃

dt
(λ(t − u))−

∫ ∞

0

eMuM−1 d
2x̃

dt2
(λ(t− u)) du

= L(t) + E(t)

The linear instantaneous lag is

L(t) = M−1 dx̃

dt
(λ(t)) (7)

If we define the drift of the QSE to be the rate of change

r(t) :=
dx̃

dt
=

dx̃

dλ

dλ

dt
(8)

then the linear instantaneous lag is

L(t) = M−1r(t). (9)

The error to the linear instantaneous lag is

E(t) = −
∫ ∞

0

eMuM−1d
2x̃

dt2
(λ(t − u)) du.

which includes historical information. This can also be expressed as

E(t) = −
∫ ∞

0

eMuM−1
[

x̃′′(λ(t − u))(λ′(t− u))2 + x̃′(λ(t− u))λ′′(t− u)
]

du.

To summarize, the solution of (4) follows the QSE x̃(λ(t)) with a linear instan-
taneous lag term L(t) and a history-dependent term E(t).
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2.1 A criterion for R-tipping with steady drift

If dx̃
dt = r is constant in time then we say the system has steady drift and (6)

simplifies to x(t)−x̃(λ(t)) = M−1r. In other words, one can verify that E(t) = 0
and that

|x(t) − x̃(λ(t))| = |M−1r|, (10)

On writing the matrix norm ‖M‖ = supv 6=0 |Mv|/|v| we note that for any r 6= 0
and invertible M we have

‖M‖−1 · |r| ≤ |M−1r| ≤ ‖M−1‖ · |r|.

We can avoid R-tipping if |x(t)− x̃(λ(t))| = |M−1r| < R and hence a sufficient
condition on the rate of parameter variation to avoid R-tipping is that

‖M−1‖ · |r| < R (11)

while a sufficient condition for R-tipping to occur in this model is that

‖M‖−1 · |r| > R.

In the intermediate case, the path of parameter variation will determine whether
or not there is any R-tipping.

2.2 General criteria for R-tipping

In the more general case2 where r(t) varies with t we use (6) and the inequality
|eMuv| ≤ ‖eMu‖|v| to give the upper bound

|x(t) − x̃(t)| ≤
∫ ∞

0

∥

∥eMu
∥

∥

∣

∣

∣

∣

dx̃

dt
(λ(t− u))

∣

∣

∣

∣

du.

If we define

rmax(t) = sup
s≤t

∣

∣

∣

∣

dx̃

dt
(λ(s))

∣

∣

∣

∣

= sup
s≤t

∣

∣

∣

∣

dx̃

dλ
(λ(s))

dλ

dt
(s)

∣

∣

∣

∣

,

then this means that

|x(t) − x̃(t)| ≤ rmax(t)

∫ ∞

0

∥

∥eMu
∥

∥ du.

Moreover, if M is stable then
∥

∥eMu
∥

∥ ≤ c e−βu (12)

for some real c, β > 0 (see [12]), and so

|x(t) − x̃(t)| ≤ rmax(t)
c

β
.

2The first part of this section is a revised and corrected version of the corresponding
section that appeared in in Phil. Trans. R. Soc. A (2012) 370, 1166-1184, and is based on
the published correction prepared with the assistance of Clare Hobbs.
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Hence, we can guarantee that (4) avoids R-tipping by time t if

c

β
rmax(t) < R. (13)

If M is scalar then we can choose c = 1, β = −M and (13) reduces to

‖M−1‖ · rmax(t) < R (14)

On the other hand, ifM is a matrix then we need a good choice of c and β in (12)
to make the tipping condition (13) optimal, but this depends on the matrix
structure and not simply the norm; see for example the text by Hinrichsen and
Pritchard [12] and the elegant estimates of Godunov [27, Eq.(13)].

Note that the tipping radius approach does not seem to easily give any
sufficient condition to undergo R-tipping in terms of rmax(t), comparable to
sufficient condition for tipping with steady drift given the end of the previous
section.

One can define a natural timescale for the motion of the QSE as

R

|r(t)| = R

(
∣

∣

∣

∣

dx̃

dλ

dλ

dt

∣

∣

∣

∣

)−1

;

note that in general, combinations of dx̃/dt and dλ/dt do not give timescales in
units s−1. For an R-tipping to occur, this natural timescale may be comparable
to the slowest timescale (e.g. the reciprocal of the leading eigenvalue ofM) of the
parametrized system. The three examples in the next section have |dx̃/dλ| = 1
and R ≈ 1 so we expect R-tipping when |dλ/dt| ≈ ‖M‖. However, if |dx̃/dλ| ≈
1/ǫ, then clearly we can have R-tipping even when |dλ/dt| ≈ ǫ‖M‖.

It is possible to think of more general tipping problems by analogy with the
“linear system and tipping radius” model discussed here. For example, for an
open nonlinear system we consider an “effective tipping radius” that corresponds
to how far the linearized system needs to be from a branch of QSE to ensure
that the nonlinear system tips. There is however no exact analogy possible - the
effective tipping radius may depend on the shape of the local basin of attraction,
the nonlinearities present and the exact path taken in parameter space.

3 R-tipping: model examples

We give three illustrative examples of R-tipping. The first two are based on
normal forms for the two basic codimension one bifurcation that are generic for
dissipative systems: the saddle-node and the Hopf bifurcation. The third is an
example that uses a fast-slow system to show that R-tipping can occur even in
cases where there is a single attractor that is globally asymptotically stable.
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(a) 0 < r < µ

x̃s
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A

(b) r = µ
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AB
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(c) r > µ

x̃s
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x x x

Figure 3: Phase portraits of (15) for (a) 0 < r < µ, (b) r = µ, and (c) r > µ,
including the two quasi-static equilibria, x̃a and x̃s, and the two invariant lines,
A and B.

3.1 Saddle-node normal form with steady drift

We consider the example system for x ∈ R with parameter λ(t) ∈ R and drift r.

dx

dt
= (x+ λ)

2 − µ, (15)

dλ

dt
= r, (16)

with fixed µ > 0. In the (x, λ) phase plane of (15)–(16), there are two dx/dt = 0
isoclines given by x̃a(µ) = {(x, λ) ∈ R2 : λ = −√

µ− x} and x̃s(µ) = {(x, λ) ∈
R2 : λ =

√
µ − x}, that correspond to two QSE; a stable node and a saddle,

respectively, for (15). Furthermore, if µ > r there are two invariant lines, one
attracting

A(µ, r) = {(x, λ) ∈ R
2 : λ = −√

µ− r − x},
and one repelling

B(µ, r) = {(x, λ) ∈ R
2 : λ =

√
µ− r − x},

both with a constant slope dλ/dx = −1 (Fig. 3). The stability manifests itself as
an exponential decay (growth) of a small perturbations about A(µ, r) (B(µ, r)).

If 0 < r < µ then B(µ, r) defines a tipping threshold. Initial conditions
below B(µ, r) converge to A(µ, r) whereas initial conditions above B(µ, r) give
rise to solutions x(t) → ∞ as t → ∞. If r = µ then A(µ, r) and B(µ, r)
coalesce into a neutrally stable invariant line AB [Fig. 3(b)] that disappears for
r > µ [Fig. 3(c)]. Hence, for r > µ there is no tipping threshold, meaning that
trajectories for all initial conditions become unbounded as t → ∞.

Let us assume that the system is at (x0, λ0) at time t = 0. If the initial
condition (x0, λ0) lies between λ = −x and x̃s(µ) then the critical rate rc is the
value of r at which the r-dependent tipping threshold B(µ, r) crosses (x0, λ0).

9



If the initial condition lies on or below the line λ = −x then the critical rate rc
is the value of r at which B(µ, r) and A(µ, r) meet and disappear. This gives a
precise value for the critical rate as the following function of initial conditions:

rc =

{

µ− (λ0 + x0)
2 if − x0 < λ0 < −x0 +

√
µ,

µ if λ0 ≤ −x0.
(17)

We can approximate this result using the simple linear model (4) with the
linearization at the QSE as M = −2

√
µ so that ‖M−1‖ = ‖M‖−1 = 1/(2

√
µ).

Clearly, the linear model with R = 2
√
µ given by x̃s (basin boundary for x̃a)

overestimates rc because the linear attraction weakens on moving away from
the stable QSE in the nonlinear problem. This can be overcome by choosing an
effective tipping radius Rc. Comparing with (11), the system avoids tipping if

|r| < 2
√
µRc

which, for rc = µ, suggests an effective tipping radius Rc =
√
µ/2. Finally,

owing to steady drift, this problem can be reduced to a saddle-node bifurcation
at r = µ in a co-moving coordinate system y = x+ λ.

3.2 A subcritical Hopf normal form

As a second example we consider

dz

dt
= F (z − λ), (18)

where z = x + iy ∈ C. For the subcritical Hopf normal form with frequency ω
we choose

F (z) = (−1 + i ω)z + |z|2z.
Note that the system (18) has only one QSE at z̃ = λ(t). Two cases of R-tipping
that we consider are with steady drift ( these can be reduced to a bifurcation
problem in another coordinate system) and with unsteady drift (where there is
no straightforward simplification to a bifurcation problem).

3.2.1 Hopf normal form with steady drift

Consider (18) with a uniform drift of the QSE along the real axis, at a rate r
(which must be real): dλ/dt = r. There is a critical rate rc at which the system
moves away from the stable QSE. We can find this rc analytically by changing
to the co-moving system for w = z − λ,

dw

dt
= F (w) − r, (19)

where a stable equilibrium represents the ability to track the QSE in the original
system. Setting w = |w| eiθ and rewriting equation (19) in terms of d|w|/dt and
dθ/dt gives an equilibrium at (|we|, θe) that satisfies

|we|6 − 2|we|4 + (ω2 + 1)|we|2 − r2 = 0. (20)

10



In the (r, ω) parameter plane, there is a saddle-node bifurcation curve (S in
Fig. 4(a)) whose different branches are given by equation (20) with

|we|2± =
2

3

(

1±
√

1− 3

4
(1 + ω2)

)

, (21)

and join at cusp points at (r, ω) = (±(2/3)3/2,±(1/3)1/2) (not marked in
Fig. 4(a)). Linearising about the stable equilibrium (|we|, θe) reveals that the
characteristic polynomial

s2 + (2− 4|we|2) s+ ω2 + (|we|2 − 1)(3|we|2 − 1) = 0,

has a pair of pure imaginary roots indicating a Hopf bifurcation when |we|2 =
1/2 and ω2 > 1/4. In the (r, ω) parameter plane, (disjoint) Hopf bifurcation
curves (H) originate from Bogdanov-Takens bifurcation points (BT ) at (r, ω) =
(±1/2,±1/2), and are given by

1 + 4ω2

8
− r2 = 0 and ω2 > 1/4, (22)

that follows from equation (20) with |we|2 = 1/2. At BT , saddle-node bifurca-
tion changes from super (solid) to subcritical (dashed). It turns out that the
stable equilibrium for (19), indicating the ability to track the QSE in the origi-
nal system, disappears in a supercritical saddle-node bifurcation when ω2 < 1/4
and becomes unstable in a subcritical Hopf bifurcation when ω2 > 1/4. Hence,
for initial conditions within the basin boundary of this equilibrium, the critical
rate is given by

rc(ω) =

{

±
√

|we|6− − 2|we|4− + (ω2 + 1)|we|2− if ω2 ≤ 1/4,

±
√

(1 + 4ω2)/8 if ω2 > 1/4.
(23)

Again, we can approximate this result using the simple linear model (4) with
the linearization at the QSE asM = (−1, 5;−5,−1) so that ‖M−1‖ = ‖M‖−1 =
0.1961. Clearly, the linear model with a tipping radius R = 1 given by the
unstable periodic orbit (basin boundary for z̃) does not account for nonlinear
attraction away from the QSE and for the spiraling shape of trajectories when
ω 6= 0. Therefore, we choose an effective tipping radius Rc. Comparing with
(11), the system avoids tipping if

|r| < 5.0990Rc

which suggests an ω-dependent effective tipping radius Rc(ω) = rc(ω)/5.099.
R-tipping that reduces to a bifurcation problem in a co-moving system should

not be confused with B-tipping: observe that the bifurcation parameter r does
not vary in time, and it is “the ability to track the QSE”, rather than the QSE
itself, that bifurcates.
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Figure 4: (a) Solid curves in a two-parameter tipping diagram for (18) with
steady drift indicate the critical rate rc(ω). The stable equilibrium for the co-
moving system (19), or the ability to track the QSE in the original system (18),
(b) disappears in a saddle-node bifurcation or (c) destabilises in a subcritical
Hopf bifurcation when r = rc(ω).

3.2.2 Hopf normal form with unsteady drift

We now consider (18) where we include a smooth shift of QSE between asymp-
totically steady positions at z = 0 to z = ∆, according to

dλ

dt
= ρλ(∆− λ), λ(t0) = ∆/2 (24)

where ρ > 0 parametrizes the maximum rate of the shift, ∆ > 0 is the amplitude
of the shift and t0 is the time when the rate of change is largest. Integrating
(24) gives

λ(t) = ∆(tanh(∆ ρ(t− t0)/2) + 1)/2. (25)

which implies the following parameter dependence on time:

λ(−t) → 0, λ(t) → ∆ as t → ∞ and
dλ

dt
≤ dλ

dt
(t0) =

∆2 ρ

4
.

Near t = t0 this describes a smooth shift between the location of an asymptot-
ically stable equilibrium from z = 0 to z = ∆, and the maximum rate of the
shift is ∆2 ρ/4 at t = t0. Observe that there is no change in stability or basin
size of the QSE as t changes. Fig. 5 shows typical trajectories starting at an
arbitrary initial condition within the basin of attraction using fixed ∆ and two
values of ρ. As shown in the diagram, there is a critical value ρc such that for
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Figure 5: R-tipping for (19)–(24) for ∆ = 8 showing time evolution for (a)
ρ = 4.76 and (b) ρ = 4.8 (recall that ρ scales the maximum rate of change) from
an initial condition (x, y, λ) = (0.4, 0.5, 0.0001). For ρ > ρc = 4.78 we find that
system trajectories no longer follow the stable quasi-static equilibrium (shown
by the dashed line) as they meet its basin boundary.

ρ < ρc the system can track the QSE while for ρ > ρc a tipping occurs near
t = t0.

Jan Sieber (pers. comm.) has pointed out that this case may still be quantifi-
able by numerical approximation of the ρc that gives a heteroclinic connection
from an (initial) saddle equilibrium at (z, λ) = (0, 0) to a saddle periodic orbit
at (|z −∆|, λ) = (1,∆) for the extended system (18) and (24). Such a connec-
tion indicates ρc for which the (initial) saddle equilibrium moves away from the
basin boundary of the stable equilibrium at (z, λ) = (∆,∆).

3.3 A fast-slow system with R-tipping

A particularly interesting case of R-tipping can occur in slow-fast systems that
have a (unique, globally stable) QSE near locally folded critical (slow) manifold,
of which the recently studied compost-bomb instability is a representative [18,
28]. Here, we consider a simple example

ǫ
dx1

dt
= x2 + λ+ x1(x1 − 1), (26)

dx2

dt
= −

N
∑

n=1

xn
1 , (27)

with odd N , fast variable x1 ∈ R, slow variable x2 ∈ R, and small parameter
0 < ǫ ≪ 1. A unique equilibrium for (26)–(27), x̃(λ) = (0,−λ), is asymptotically
stable for any fixed value of λ, and globally asymptotically stable if N ≥ 5. The
slow dynamics is approximated by the one-dimensional critical (slow) manifold,
S(λ) = {(x1, x2) ∈ R2 : x2 = −λ − x1(x1 − 1)}, that has a fold, L(λ) =
(12 ,−λ + 1

4 ), tangent to the fast x1 direction. If N ≥ 5, the fold defines a
tipping threshold that is not associated with any basin boundary. Here, S(λ)
is partitioned into the attracting part, Sa(λ) for x1 < 1

2 , fold L(λ) for x1 = 1
2 ,

and repelling part, Sr(λ) for x1 > 1
2 .

13



3.3.1 The slow-fast system with steady drift

Consider (26)–(27) with a uniform drift of the QSE, x̃(λ(t)), in the negative x2

direction at a constant rate
dλ

dt
= r > 0, (28)

so that λ becomes the second slow variable. There is a critical rate, rc, at
which (26)–(28) is destabilized, meaning that trajectories diverge away from
the QSE for r > rc. We can find this critical rate in the singular limit, ǫ → 0,
by setting ǫ = 0 in (26), differentiating the resulting algebraic equation with
respect to t, and studying the projected reduced system [7]:

dx1

dt
=

(

−r +

N
∑

n=1

xn
1

)

(2x1 − 1)−1, (29)

dλ

dt
= r, (30)

that aproximates the slow dynamics for (26)–(28) on the two-dimensional critical
manifold, S = {(x1, x2, λ) ∈ R3 : x2 = −λ − x1(x1 − 1)} (gray surface in
Fig. 6). Although (29)–(30) is typically singular at the one-dimensional fold,
L = {(x1, x2, λ) ∈ R

3 : x1 = 1
2 , x2 = −λ + 1

4}, its phase portrait can be
constructed by rescaling time

dt

dτ
= −(2x1 − 1) ⇒ t = −

∫ τ

0

(2x1(s)− 1)ds,

producing the phase portrait for the desingularised system [14]:

dx1

dτ
= r −

N
∑

n=1

xn
1 , (31)

dλ

dτ
= −r(2x1 − 1), (32)

and then reversing the direction of time on the repelling part of the critical
manifold, Sr. In this way, we find that for 0 < r <

∑N
n=1 2

−n trajectories for all
initial conditions within Sa converge to a stable invariant line that is defined by
a constant x1 satisfying r =

∑N
n=1 x

n
1 , meaning that trajectories remain close

to the QSE, x̃, for all time [r < rc in Fig. 6(a) ]. However, for r >
∑N

n=1 2
−n,

trajectories for all initial conditions within Sa reach the fold, L, where they
“slip off” the critical manifold and diverge away from the QSE in the fast x1

direction [r > rc in Fig. 6(a)]. Hence, system (26)–(28) exhibits R-tipping and,
for ǫ → 0, the critical rate is

rc =

N
∑

n=1

2−n. (33)

14



-1012

0
0.5

1
1.5

2

-2

-1

0

012
-1012

0
0.5

1
1.5

2

-2

-1

0

012

(a) (b)

x̃ x̃L L

Sr Sa Sr Sa

r>rc

r<rc

ρ>ρc

ρ<ρc

NN NN

N N

x1

x2

λ

x1

x2

λ

Figure 6: R-tipping in slow-fast systems with a unique quasi-stable equilibrium,
x̃, and (gray surface) locally folded critical (slow) manifold, S = Sa∪L∪Sr , for
(a) the steady drift problem (26)–(28) and (b) the unsteady drift problem (26)–
(27) and (34), where ǫ = 0.01 and N = 1. In (a), Eq. (33) gives rc = 1

2 and
shown are trajectories for r = 0.4 < rc and r = 0.6 > rc. In (b), Eq. (37)
gives ρc ≈ 0.99 for the initial condition at the origin (black dot) and shown are
trajectories for ρ = 0.7 < ρc and ρ = 1 > ρc.

3.3.2 The slow-fast system with unsteady drift

We now consider (26)–(27) with a nonuniform drift

dλ

dt
= ρ e−λ (34)

that is a logarithmic growth, λ(t) = ln
[

ρ(t− t0) + eλ(t0)
]

, where we assume
ρ > 0. Again, there is a critical rate, ρc, at which system (26)–(27) and (34) is
destabilized. The key difference from the steady drift problem is that ρc depends
on the initial condition within Sa. This is because the desingularised system

dx1

dτ
= e−λ ρ−

N
∑

n=1

xn
1 , (35)

dλ

dτ
= −e−λ ρ (2x1 − 1), (36)

has a saddle equilibrium for all ρ > 0, corresponding to a folded-saddle singu-
larity [1, 24]:

F = (x1,F , λF (ρ)) =

(

1

2
,− ln

N
∑

n=1

2−n/ρ

)

,

for the projected reduced system. One can use the theory developed in [28,
Sec.4] to approximate the critical value, ρc. Given F , the eigenvector

w =
(

−q/p+
√

2 + (q/p)2, 1
)T

15



corresponding to the stable eigendirection of the saddle F for (35)–(36), an
initial condition (x1,0, λ0) within Sa, and as far as ǫ → 0, the critical rate can
be calculated using [28, Eq.(4.12)] to give

ρc ≈ p exp

(

λ0 +
1/2− x1,0

−q/p+
√

2 + (q/p)2

)

, (37)

where p =
∑N

n=1 2−n, q =
∑N

n=1 n2−n. Below the critical rate, the trajectory
misses the fold, L, and approaches the QSE, x̃, as time tends to infinity [ρ < ρc
in Fig. 6(b)]. Above the critical rate, the trajectory reaches L and diverges
from the QSE in the fast x1 direction [ρ > ρc Fig. 6(b)]. Note that in this
example, the critical rate of parameter variation is of the same order as the
slow dynamics - only when the parameter variation is very slow with respect to
the slow variable and there are three timescales is tracking guaranteed. In this
sense, the rate dependent tipping occurs when the slow and very slow timescales
are no longer separable.

4 B-, N- and R-tipping examples in a simple

climate model

We present a simple climate model that independently show, under differing cir-
cumstances, all three types of tipping. In its deterministic version, this is a “zero
dimensional” global energy balance model originally introduced by Fraedrich [8]:

c
dT

dt
= R ↓ −R ↑ . (38)

The state variable T represents an average surface temperature of an ocean
on a spherical planet subject to radiative heating. Eq. (38) is a deterministic
energy conservation law where the constant c represents the thermal capacity
of a well-mixed ocean layer of depth 30m covering 70.8% of the Earth’s surface.
The incoming solar radiation R ↓ and outgoing radiation R ↑ are modelled as

R ↓= 1

4
µI0(1− αp(T )), R ↑= eSAσT

4.

Here I0 is the solar constant and the parameter µ allows for variations in the
planetary orbit, or in the solar constant. An ice-albedo feedback is introduced
to link variations in temperature with changes of ice and thus of albedo αp:
Fraedrich [8] uses a quadratic relation

αp(T ) = a2 − b2T
2, (39)

where the parameters a2 > 1 and b2 control the albedo magnitude and slope of
the albedo-temperature relation. The outgoing radiation term is obtained by
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I0 1366 Wm−2 µ 1
σ 5.6704× 10−8 Wm−2 K−4 b2 1.690× 10−5 K−2

c 108 kgK s−2 a2 1.6927
eSA 0.62

Table 1: Values of the constants and parameters for Eq. (40).

the Stefan-Boltzmann law, where eSA is the effective emissivity and σ is the
Stefan-Boltzmann constant. With these choices (38) is written as [8, Eq. 4.1]:

dT

dt
= f(T ) = c−1a(−T 4 + bµT

2 − dµ), (40)

a = eSAσ/c, bµ = µI0b2/4eSAσ, dµ = −µI0(1− a2)/4eSAσ.

Table 1 shows the values of constants and parameters for the system at equi-
librium. Sutera [23] reformulates Fraedrich’s model to incorporate stochastic
forcing:

dT = f(T )dt+
√
ν dW, (41)

with f(T ) as in (40), where dW is a normalised Wiener (white noise) process
such that (dW )2 has dimension of time t, ν has dimension of 1/t and the variance
of

√
ν dW per unit time is ν.
For µ larger than a critical value 0 < µc < 1, the deterministic system (40)

has two equilibria T+ (stable) and T− (unstable). A saddle-node bifurcation
takes place at some µ = µc with 0 < µc < 1, where the two equilibria T±

merge and disappear. Sutera [23] studies N-tipping in the stochastically forced
system (41) for µ > µc, as a function of the distance µ−µc from the bifurcation
value. Namely, they compute the exit time such that the process jumps over
the “potential barrier” T− and falls irreversibly to ‘ice-covered earth’.

We illustrate in Fig. 7 three situations where the Sutera-Fraedrich model
exhibits “pure” B-, N- and R-tipping independently; parameter values are de-
tailed in Table 2. Panels (a-b) show an example of R-tipping, (c) of N-tipping
and (d) of B-tipping. For case (a-b), we evolve the dimensionless parameter λ
according to the ODE dλ/dt = ρλ(1 − λ) and set b2 = (1 − λ)binit2 + λbfinal2 -
for this figure we use initial values λ = 106 and T = 290K. The value of a2 is
calculated to ensure that b2µ − 4dµ is held constant for the parameter groups
defined in (40). The constant ρ can be thought of as simply scaling the rate of
passage from the initial to the final values given in the Table.

5 Summary and conclusions

It is of great practical importance to understand the theoretical mechanisms
behind tipping phenomena in the climate system as well as other systems. We
have proposed here that such mechanisms can be effectively divided into three
distinct categories: bifurcation-induced, noise-induced and rate-dependent tip-
ping, respectively denoted as B-, N- and R-tipping. In particular, we describe
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Figure 7: Illustrations of trajectories for the Sutera-Fraedrich model (41) show-
ing the presence of all three tipping types for parameters in Table 2 - horizontal
axis (years) vertical axis (Kelvin). The solid lines show system trajectories while
the dash lines show the location of the QSE – the branch T+ is stable while
the branch T− is unstable in this model. Panels (a)-(b) show an R-tipping for
a smooth change of parameters between two steady states. In (a) ρ = 0.18 the
system returns to the QSE after a transient. In (b) ρ = 0.19 the system becomes
unbounded indicating a critical value ρc ≈ 0.185 yr−1. (c) shows an example
of N-tipping in the presence of noise of amplitude ν = 1.0 yr−1; (d) shows an
example of B-tipping on decreasing µ uniformly from 1 at a constant rate. Note
that in case (d) the two QSE coalesce at a saddle-node bifurcation.
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Parameter (a-b) (c) (d)
µ 1.0 1.0 decreases from 1.0

at rate −0.0004 yr−1

b2 (K−2) initial 1.690× 10−5 1.690× 10−5 1.04× 10−5

final 1.8350× 10−5

a2 initial 1.6927 1.6927 1.2
final 1.8168

ν (yr−1) 0 1.0 0

Table 2: Parameter values for simulations shown in Fig. 7. For case (a-b)
we interpolate between the values given along the curve such that b2µ − 4dµ is
constant at a rate proportional to ρ. In case (c) all parameters are fixed but
noise is added, while in case (d) we impose a steady drift of the parameter µ
downwards.

R-tipping, a mechanism that may be exhibited by (sub-systems of) the climate
system independently of the presence or absence of the other types of tipping.

In realistic models, tipping effects may be associated with a combination
of the three mechanisms, and it will be a challenge to understand this more
general case. For example B-tipping, usually associated with slow changes in
a parameter, may turn into R-tipping upon increasing the rate of change for
the parameters. However, as schematically illustrated in Fig. 8, completely new
mechanisms may appear on increasing the rate, including the possibility that
B-tipping may be suppressed for fast enough variation of parameters. Alterna-
tively, the B-tipping may persist but an R-tipping mechanism may come into
play before the B-tipping is reached.

We emphasise that neither N-tipping and R-tipping require any change of
stability. Hence there is no reason to assume that the techniques of [4], based on
a de-trended autoregressive model for B-tipping, should deliver useful predic-
tions in such cases - as noted by [5], N-tipping is intrinsically unpredictable. We
are investigating whether any novel predictive technique may be developed for
R-tipping. Those cases of R-tipping that can be reduced to a local bifurcation
in a co-moving system may be expected to be predictable using similar meth-
ods; this includes the examples in Sec. 3(a),(b)(i) with steady drift. In more
complex cases, ρc may still be quantifiable by global heteroclinic bifurcations for
an extended system, for example (15) and (24) or (18) and (24) in Sec. 3(b)(ii).

The classification proposed here may be applicable to a wide range of open
systems under the influence of noise and/or parameter changes. Recent work
of Nene and Zaikin [20] suggests there may be interesting applications of rate-
dependent bifurcation theory to determine cell fate. There are potentially many
other application areas, from mechanics and ecology to economics and social
sciences where tipping points are of interest. We suggest that this will be an
area of significant mathematical development in the coming years.
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Figure 8: Schematic illustration of different possible system behaviours on
ramping the parameter λ at differing rates (dashed arrows) through the re-
gion λ ∈ [0, 1]. (a) shows an example where there is a B-tipping for low rates
(quasi-static) that disappears for high enough rates. (b) shows an example
where there is no tipping for small enough rates but R-tipping for large enough
rates. (c) shows both B- and R-tipping, but there is a range of rates where no
instability appears.
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