10 research outputs found
Cannabinoid Modulation of Reinforcement Maintained by Stimulation of the Medial Forebrain Bundle in C57Bl/6J Mice
Cannabinoid agonists, including marijuana containing delta-9-tetrahydrocannabinol (THC), are found rewarding by humans. In addition to human self-reports and experimental studies that show marijuana is rewarding, contributions from preclinical studies also have implicated cannabinoid receptors in reward-motivated behavior. One way to assess these preclinical effects of cannabinoids is intracranial self-stimulation (ICSS), where an animal performs a response to receive electrical stimulation of a specific brain area or circuit known to be involved in reward. Drugs of abuse, such as psychomotor stimulants, facilitate responding for ICSS. While a few studies have shown facilitating effects of cannabinoids in rats, several have shown the opposite effect, and no studies so far have evaluated cannabinoids in mouse ICSS. Furthermore there are no studies evaluating specific inhibitors of endocannabinoid catabolic enzymes in ICSS in any species. In these studies we assessed the cannabinoid agonist THC, as well as the fatty acid amide hydrolase (FAAH) inhibitor, PF-3845, the monoacylglycerol lipase (MAGL) inhibitor JZL184, and the combined FAAH/MAGL inhibitor SA-57 in ICSS of the medial forebrain bundle in C57BL/6 mice. Additionally, we assessed the psychomotor stimulant cocaine as a positive control to facilitate ICSS. These studies were complimented with spontaneous locomotor activity and food-maintained operant experiments to assess the sensitivity of ICSS to cannabinoids. Additionally, brain endocannabinoid levels were measured in brain regions associated with the mesolimbic system after enzyme inhibitor treatments. THC, JZL184, and SA-57 all produced time-dependent reductions in ICSS that were mediated through CB1 receptors, as they were blocked by pre-treatment with the CB1 antagonist rimonabant, but not with the CB2 antagonist SR144528. PF-3845 also reduced ICSS, but did so independent of CB1 and CB2 receptors, and only with one dose (30.0 mg/kg) that has not been assessed previously in vivo. We showed that ICSS was more sensitive to the rate-reducing effects of cannabinoids than other measures of behavior with motor components including spontaneous locomotor activity and operant nose-poking for food, and that the reduction of ICSS produced by both JZL184 and SA-57 is accompanied by increases in 2-AG in mesolimbic brain areas. Thus, cannabinoids do not facilitate ICSS in C57BL/6 mice over a range of doses and pre-treatment times, similar to most studies with rats. These data suggest that cannabinoids may produce rewarding effects through non-mesolimbic areas of the brain
EXAMINATION OF THE DISCRIMINATIVE STIMULUS AND CROSS-TOLERANCE INDUCING PROPERTIES OF N-DESMETHYLCLOZAPINE IN C57BL/6 MICE.
Due to its unique receptor binding profile and its relationship to clozapine, N-desmethylclozapine (NDMC) has been examined as a possible antipsychotic drug (APD). Clozapine has been trained as discriminative stimulus in our lab, but NDMC has not yet been established as a discriminative stimulus. In experiment 1, 12 C57BL/6 mice were trained to discriminate 10.0 mg/kg NDMC from VEH using a standard-two lever operant procedure to assess antipsychotic substitution. The typical APD clozapine fully substituted for NDMC at 2 doses tested (2.5 and 5.0 mg/kg), while typical APD haloperidol failed to substitute for NDMC. In Experiment 2, 11 mice were given repeated administration of NDMC to assess cross-tolerance development to the discriminative stimulus of clozapine. NDMC was successfully trained as a discriminative stimulus and was also shown to induce cross-tolerance to clozapine’s discriminative stimulus, indicating similar underlying pharmacological mechanisms of action between NDMC and clozapine
Effects of Acute and Repeated Administration of Oxycodone and Naloxone-Precipitated Withdrawal on Intracranial Self-Stimulation in Rats
ABSTRACT Incidence of prescription opioid abuse and overdose, often led by oxycodone, continues to increase, producing twice as many overdose deaths as heroin. Surprisingly, preclinical reports relevant to oxycodone's abuse-related effects are relatively sparse considering its history and patient usage. The goal of this study was to characterize dose-and time-dependent effects of acute and repeated oxycodone administration in a frequencyrate intracranial self-stimulation (ICSS) procedure, an assay often predictive of drug-related reinforcing effects, in male Sprague-Dawley rats. We hypothesized that oxycodone would produce a biphasic profile of rate-increasing and ratedecreasing effects maintained by ICSS similar to m-opioid receptor agonists. Oxycodone (0.03, 0.3, 1, and 3 mg/kg, s.c.) produced dose-and time-dependent alterations on ICSS, with the predicted biphasic profile of rate-increasing effects at lower stimulation frequencies followed by rate-decreasing effects at higher frequencies. Peak effects were observed between 30 and 60 minutes, which were reversed by naloxone pretreatment (30 minutes). Tolerance to rate-decreasing effects was observed over a 5-day period when rats were treated with 1 mg/kg oxycodone twice a day. Subsequently, the dosing regimen was increased to 3 mg/kg twice a day over 10 days, although further marked tolerance did not develop. When then challenged with 10 mg/kg naloxone, a significant suppression below baseline levels of ICSS-maintained responding occurred indicative of dependence that recovered to baseline within 5 hours. The results of this study provide the first report of acute and chronic effects of oxycodone on responding maintained by ICSS presentation and the use of ICSS-maintained responding to characterize its tolerance and dependence effects