363 research outputs found

    Influence of external and internal factors on financial advisors\u27 guidance of clients in the area of charitable giving

    Get PDF
    Charitable giving plays a vital role in the ability of nonprofit organizations to carry out their missions to contribute to the well-being of society. Research suggests that most wealthy Americans have an interest in being philanthropic and giving to nonprofit organizations. Financial advisors often play a substantial role in helping their clients understand the complex policies related to charitable giving. As the experts, financial advisors play an important consultative role in making sense of the benefits that can come as a result of charitable giving. The purpose of this study was to explore how financial advisors work with clients in the area of charitable giving. This study sought to explore how external factors, including such aspects of financial incentives, advisors’ knowledge, and service perspective impact how financial advisors guide clients in charitable giving decisions. Additionally, internal factors, including advisors’ values and beliefs related to charitable giving and their personal involvement in nonprofit organizations, were explored to understand how that impacts the way they work with clients regarding charitable giving. The study utilized a quantitative correlational research design. This was appropriate, as the purpose of this study was to measure the correlation between variables. The electronic survey was distributed to 156 members of the Financial Planning Association of Iowa, with 41 members who engaged in the research study. Findings indicated that service perspectives, including an advisor’s personal perspective that charitable giving is a part of overall financial planning, as well as company policy to engage clients in the area of charitable giving guidance, play a significant role in the degree to which advisors engage in conversations around charitable giving with their clients. An additional significant relationship existed between the number of clients an advisor works with who have high net worth and the advisor’s guidance in the area of charitable giving

    Plant community and tissue chemistry responses to fertilizer and litter nutrient manipulations in a temperate grassland

    Get PDF
    Human-mediated nutrient amendments have widespread effects on plant communities. One of the major consequences has been the loss of species diversity under increased nutrient inputs. The loss of species can be functional group dependent with certain functional groups being more prone to decline than others. We present results from the sixth year of a long-term fertilization and litter manipulation study in an old-field grassland. We measured plant tissue chemistry (C:N ratio) to understand the role of plant physiological responses in the increase or decline of functional groups under nutrient manipulations. Fertilized plots had significantly more total aboveground biomass and live biomass than unfertilized plots, which was largely due to greater productivity by exotic C3 grasses. We found that both fertilization and litter treatments affected plant species richness. Species richness was lower on plots that were fertilized or had litter intact; species losses were primarily from forbs and non-Poaceae graminoids. C3 grasses and forbs had lower C:N ratios under fertilization with forbs having marginally greater %N responses to fertilization than grasses. Tissue chemistry in the C3 grasses also varied depending on tissue type with reproductive tillers having higher C:N ratios than vegetative tillers. Although forbs had greater tissue chemistry responses to fertilization, they did not have a similar positive response in productivity and the number of forb species is decreasing on our experimental plots. Overall, differential nutrient uptake and use among functional groups influenced biomass production and species interactions, favoring exotic C3 grasses and leading to their dominance. These data suggest functional groups may differ in their responses to anthropogenic nutrient amendments, ultimately influencing plant community composition

    Monitoring of immune activation using biochemical changes in a porcine model of cardiac arrest.

    Get PDF
    In animal models, immune activation is often difficult to assess because of the limited availability of specific assays to detect cytokine activities. In human monocytes/macrophages, interferon-gamma induces increased production of neopterin and an enhanced activity of indoleamine 2,3-dioxygenase, which degrades tryptophan via the kynurenine pathway. Therefore, monitoring of neopterin concentrations and of tryptophan degradation can serve to detect the extent of T helper cell 1-type immune activation during cellular immune response in humans. In a porcine model of cardiac arrest, we examined the potential use of neopterin measurements and determination of the tryptophan degradation rate as a means of estimating the extent of immune activation. Urinary neopterin concentrations were measured with high-performance liquid chromatography (HPLC) and radioimmunoassay (RIA) (BRAHMS Diagnostica, Berlin, Germany). Serum and plasma tryptophan and kynurenine concentrations were also determined using HPLC. Serum and urine neopterin concentrations were not detectable with HPLC in these specimens, whereas RIA gave weakly (presumably false) positive results. The mean serum tryptophan concentration was 39.0 +/- 6.2 micromol/l, and the mean kynurenine concentration was 0.85 +/- 0.33 micromol/l. The average kynurenine-per-tryptophan quotient in serum was 21.7 +/- 8.4 nmol/micromol, and that in plasma was 20.7 +/- 9.5 nmol/micromol (n = 7), which corresponds well to normal values in humans. This study provides preliminary data to support the monitoring of tryptophan degradation but not neopterin concentrations as a potential means of detecting immune activation in a porcine model. The kynurenine-per-tryptophan quotient may serve as a short-term measurement of immune activation and hence permit an estimate of the extent of immune activation

    Total Synthesis, Structure, and Biological Activity of Adenosylrhodibalamin, the Non-Natural Rhodium Homologue of Coenzyme B12.

    Get PDF
    B12 is unique among the vitamins as it is biosynthesized only by certain prokaryotes. The complexity of its synthesis relates to its distinctive cobalt corrin structure, which is essential for B12 biochemistry and renders coenzyme B12 (AdoCbl) so intriguingly suitable for enzymatic radical reactions. However, why is cobalt so fit for its role in B12‐dependent enzymes? To address this question, we considered the substitution of cobalt in AdoCbl with rhodium to generate the rhodium analogue 5â€Č‐deoxy‐5â€Č‐adenosylrhodibalamin (AdoRbl). AdoRbl was prepared by de novo total synthesis involving both biological and chemical steps. AdoRbl was found to be inactive in vivo in microbial bioassays for methionine synthase and acted as an in vitro inhibitor of an AdoCbl‐dependent diol dehydratase. Solution NMR studies of AdoRbl revealed a structure similar to that of AdoCbl. However, the crystal structure of AdoRbl revealed a conspicuously better fit of the corrin ligand for RhIII than for CoIII, challenging the current views concerning the evolution of corrins

    High rates of N-2 fixation in temperate, western North Atlantic coastal waters expand the realm of marine diazotrophy

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mulholland, M. R., Bernhardt, P. W., Widner, B. N., Selden, C. R., Chappell, P. D., Clayton, S., Mannino, A., & Hyde, K. High rates of N-2 fixation in temperate, western North Atlantic coastal waters expand the realm of marine diazotrophy. Global Biogeochemical Cycles, 33(7), (2019): 826-840, doi:10.1029/2018GB006130.Dinitrogen (N2) fixation can alleviate N limitation of primary productivity by introducing fixed nitrogen (N) to the world's oceans. Although measurements of pelagic marine N2 fixation are predominantly from oligotrophic oceanic regions, where N limitation is thought to favor growth of diazotrophic microbes, here we report high rates of N2 fixation from seven cruises spanning four seasons in temperate, western North Atlantic coastal waters along the North American continental shelf between Cape Hatteras and Nova Scotia, an area representing 6.4% of the North Atlantic continental shelf area. Integrating average areal rates of N2 fixation during each season and for each domain in the study area, the estimated N input from N2 fixation to this temperate shelf system is 0.02 Tmol N/year, an amount equivalent to that previously estimated for the entire North Atlantic continental shelf. Unicellular group A cyanobacteria (UCYN‐A) were most often the dominant diazotrophic group expressing nifH, a gene encoding the nitrogenase enzyme, throughout the study area during all seasons. This expands the domain of these diazotrophs to include coastal waters where dissolved N concentrations are not always depleted. Further, the high rates of N2 fixation and diazotroph diversity along the western North Atlantic continental shelf underscore the need to reexamine the biogeography and the activity of diazotrophs along continental margins. Accounting for this substantial but previously overlooked source of new N to marine systems necessitates revisions to global marine N budgets.Data presented in the body and supporting information of this manuscript have been deposited in the National Aeronautics and Space Administration (NASA) repository, SeaBASS and is publicly available at the following DOI address: 10.5067/SeaBASS/CLIVEC/DATA 001. This work was supported by a grant from NASA Grant Number: NNX09AE45G to M. R. M., A. M., and K. H.; a grant from NSF to P. D. C; and the Jacques S. Zaneveld and Neil and Susan Kelley Endowed Scholarships to C. S. We thank NOAA for ship time and the captain and crew of NOAA vessels Delaware II and Henry Bigelow for assistance during field sampling. Data have been submitted to SeaBASS (https://seabass.gsfc.nasa.gov/), NASA's preferred archival repository

    Potential Virus-Mediated Nitrogen Cycling in Oxygen-Depleted Oceanic Waters

    Get PDF
    Viruses play an important role in the ecology and biogeochemistry of marine ecosystems. Beyond mortality and gene transfer, viruses can reprogram microbial metabolism during infection by expressing auxiliary metabolic genes (AMGs) involved in photosynthesis, central carbon metabolism, and nutrient cycling. While previous studies have focused on AMG diversity in the sunlit and dark ocean, less is known about the role of viruses in shaping metabolic networks along redox gradients associated with marine oxygen minimum zones (OMZs). Here, we analyzed relatively quantitative viral metagenomic datasets that profiled the oxygen gradient across Eastern Tropical South Pacific (ETSP) OMZ waters, assessing whether OMZ viruses might impact nitrogen (N) cycling via AMGs. Identified viral genomes encoded six N-cycle AMGs associated with denitrification, nitrification, assimilatory nitrate reduction, and nitrite transport. The majority of these AMGs (80%) were identified in T4-like Myoviridae phages, predicted to infect Cyanobacteria and Proteobacteria, or in unclassified archaeal viruses predicted to infect Thaumarchaeota. Four AMGs were exclusive to anoxic waters and had distributions that paralleled homologous microbial genes. Together, these findings suggest viruses modulate N-cycling processes within the ETSP OMZ and may contribute to nitrogen loss throughout the global oceans thus providing a baseline for their inclusion in the ecosystem and geochemical models

    Assessing Phytoplankton Nutritional Status and Potential Impact of Wet Deposition in Seasonally Oligotrophic Waters of the Mid-Atlantic Bight

    Get PDF
    To assess phytoplankton nutritional status in seasonally oligotrophic waters of the southern Mid-Atlantic Bight, and the potential for rain to stimulate primary production in this region during summer, shipboard bioassay experiments were performed using natural seawater and phytoplankton collected north and south of the Gulf Stream. Bioassay treatments comprised iron, nitrate, iron + nitrate, iron + nitrate + phosphate, and rainwater. Phytoplankton growth was inferred from changes in chlorophyll a, inorganic nitrogen, and carbon-13 uptake, relative to unamended control treatments. Results indicated the greatest growth stimulation by iron + nitrate + phosphate, intermediate growth stimulation by rainwater, modest growth stimulation by nitrate and iron + nitrate, and no growth stimulation by iron. Based on these data and analysis of seawater and atmospheric samples, nitrogen was the proximate limiting nutrient, with a secondary limitation imposed by phosphorus. Our results imply that summer rain events increase new production in these waters by contributing nitrogen and phosphorus, with the availability of the latter setting the upper limit on rain-stimulated new production. Plain Language Summary Human activities have substantially increased the atmospheric loading and deposition of biologically available nitrogen, an essential nutrient, to the surface ocean. Such atmospheric inputs to the ocean will likely impact on oceanic primary production by phytoplankton, and thus the marine ecosystem and ocean carbon cycling, although the scale and spatial distribution of such impacts are not well known. In this study, we used shipboard experiments, observations, and laboratory measurements to assess the potential impacts of atmospheric nitrogen deposition in rainfall on oceanic waters of the Mid-Atlantic Bight, off the U.S. eastern seaboard, during the summer. We find that the growth of phytoplankton in these waters is limited by the availability of nitrogen during summer, such that nitrogen added to the ocean by summer rain events can considerably stimulate phytoplankton primary production. However, the biological impact of these rainwater nitrogen inputs appears to be limited by the availability of another essential nutrient, phosphorus, which is present at relatively low concentrations in rainwater. This is the first study to directly examine the nutritional status of phytoplankton in relation to the impacts of rainwater nitrogen addition on primary production in oceanic waters off the U.S. East Coast

    Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gazitua, M. C., Vik, D. R., Roux, S., Gregory, A. C., Bolduc, B., Widner, B., Mulholland, M. R., Hallam, S. J., Ulloa, O., & Sullivan, M. B. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. Isme Journal, (2020), doi:10.1038/s41396-020-00825-6.Viruses play an important role in the ecology and biogeochemistry of marine ecosystems. Beyond mortality and gene transfer, viruses can reprogram microbial metabolism during infection by expressing auxiliary metabolic genes (AMGs) involved in photosynthesis, central carbon metabolism, and nutrient cycling. While previous studies have focused on AMG diversity in the sunlit and dark ocean, less is known about the role of viruses in shaping metabolic networks along redox gradients associated with marine oxygen minimum zones (OMZs). Here, we analyzed relatively quantitative viral metagenomic datasets that profiled the oxygen gradient across Eastern Tropical South Pacific (ETSP) OMZ waters, assessing whether OMZ viruses might impact nitrogen (N) cycling via AMGs. Identified viral genomes encoded six N-cycle AMGs associated with denitrification, nitrification, assimilatory nitrate reduction, and nitrite transport. The majority of these AMGs (80%) were identified in T4-like Myoviridae phages, predicted to infect Cyanobacteria and Proteobacteria, or in unclassified archaeal viruses predicted to infect Thaumarchaeota. Four AMGs were exclusive to anoxic waters and had distributions that paralleled homologous microbial genes. Together, these findings suggest viruses modulate N-cycling processes within the ETSP OMZ and may contribute to nitrogen loss throughout the global oceans thus providing a baseline for their inclusion in the ecosystem and geochemical models.We thank Sullivan Lab members and Heather Maughan for comments on the paper, Bess Ward for her contribution in the N-cycle context of our story, Kurt Hanselmann for his assistance in the calculations of the Gibbs-free energies, and the scientific party and crew of the R/V Atlantis (grant OCE-1356056 to MRM) for the sampling opportunity and support at sea. This work was funded in part by awards from the Agouron Institute to OU and MBS, a Gordon and Betty Moore Foundation Investigator Award (#3790) and NSF Biological Oceanography Awards (#1536989 and #1829831) to MBS, and the Millennium Science Initiative (grant ICN12_019-IMO) to OU. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231

    Synthesis, spectral characterization and crystal structure of Chlororhodibalamin: A synthesis platform for rhodium analogues of vitamin B12 and for Rh-based antivitamins B12

    Get PDF
    Chlororhodibalamin (ClRhbl), a rhodium analogue of vitamin B12 (cyanocobalamin), was prepared in 84% yield by metalation of the metal-free B12 ligand hydrogenobalamin using the RhI-complex [Rh(CO)2Cl]2. ClRhbl was identified and characterized by UV/Vis, circular dichroism, high-resolution mass and heteronuclear NMR spectra. The RhIII-corrin ClRhbl features the 'base-on' architecture of vitamin B12. X-ray analysis of single crystals of ClRhbl have revealed its detailed 3D-geometry and close structural similarity to the CoIII-analogue chlorocobalamin (ClCbl). ClRhbl is a versatile starting material for the preparation of other rhodibalamins, among them the organometallic derivatives adenosylrhodibalamin and methylrhodibalamin, the Rh analogues of the important coenzyme and cofactor forms of B12, adenosylcobalamin and methylcobalamin
    • 

    corecore