547 research outputs found

    Time scales of benthic macrofaunal response to pelagic production differ between major feeding groups

    Get PDF
    Benthic macrofauna, as an element of rich and diverse benthic communities of the shelf seas, play a key role in marine biogeochemical cycles and support a wide range of ecosystem services. To better understand how macrofauna affects mass and energy fluxes within the seabed and between the bed and the pelagic, it is fundamental to characterise their structural and dynamic response to the quantity, quality and timing of food supply. To do so, we have combined long-term time-series of pelagic productivity and macrofaunal abundance with a model of benthic food web to: (1) estimate the characteristic response time scales of major groups of benthic macrofauna to food availability, (2) relate these to carbon fluxes within sediments and across the benthic-pelagic boundary, and (3) explore the mechanisms responsible. The model was designed as a canonical representation of the benthic system, retaining the key pathways that connect benthic macrofauna to pelagic environment, but aggregating variables and groups that were not explicitly observed. Both observations and model simulations revealed pronounced differences between deposit and suspension feeders in their rate of response to phytoplankton blooms: deposit feeders showed a dampened response lagging 26-125 days behind the peak in pelagic production, while suspension feeders responded rapidly, within only 5-7 days. The model parametrisation obtained during calibration relates this to differences in feeding modes, in (trophic) proximity to primary production and in rates of ingestion and losses. Specifically, suspension feeders are predicted to act as a gateway to pelagic productivity, controlling the quantity of organic carbon reaching sediment-dwelling fauna

    Contestable adulthood: variability and disparity in markers for negotiating the transition to adulthood

    Get PDF
    Recent research has identified a discreet set of subjective markers that are seen as characterizing the transition to adulthood. The current study challenges this coherence by examining the disparity and variability in young people’s selection of such criteria. Four sentence-completion cues corresponding to four differentcontexts in which adult status might be contested were given to 156 British 16- to 17-year-olds. Their qualitative responses were analyzed to explore patterns whilst capturing some of their richness and diversity. An astonishing amount of variability emerged, both within and between cued contexts.The implications of this variability for how the transition to adulthood is experienced are explored. The argument is made that markers of the transition to adulthood are not merely reflective of the bio–psycho–social development of young people. Rather, adulthood here is seen as an essentially contested concept,located within the discursive interactional environment in which young people participate

    Pulmonary stretch receptor activity during partial liquid ventilation in cats with healthy lungs

    Get PDF
    Aim: To study whether pulmonary stretch receptor (PSR) activity in mechanically ventilated young cats with healthy lungs during partial liquid ventilation (PLV) is different from that during gas ventilation (GV). Methods: In 10 young cats (4.4 +/- 0.4 months, 2.3 +/- 0.3 kg; mean B SD), PSR instantaneous impulse frequency (PSR f(imp)) was recorded from single fibres in the vagal nerve during GV and PLV with perfluorocarbon (30 ml/kg) at increasing positive inspiratory pressures (PIP; 1.2, 1.8, 2.2 and 2.7 kPa), and at a positive end-expiratory pressure of 0.5 kPa. Results: All PSRs studied during GV maintained their phasic character with increased impulse frequency during inspiration during PLV. Peak PSR fimp was lower at PIP 1.2 kPa (p < 0.05) and at PIP 2.7 kPa (p = 0.10) during PLV than during GV, giving a lower number of PSR impulses at these two settings during PLV (p < 0.05). Conclusion: The phasic character of PSR activity is similar during GV and PLV. PSR activity is not higher during PLV than during GV in cats with healthy lungs, indicating no extensive stretching of the lung during PLV. Copyright (C) 2004 S. Karger AG, Basel

    Effects of ocean acidification on invertebrate settlement at volcanic CO<inf>2</inf> vents

    Get PDF
    We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336-341 ppm, pH 8.09-8.15) to high levels (886-5,148 ppm) causing acidified conditions near the vents (pH 7.08-7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7. 41-7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms. © 2010 Springer-Verlag

    Bright spots as climate-smart marine spatial planning tools for conservation and blue growth

    Get PDF
    Marine spatial planning that addresses ocean climate-driven change (‘climate-smart MSP’) is a global aspiration to support economic growth, food security and ecosystem sustainability. Ocean climate change (‘CC’) modelling may become a key decision-support tool for MSP, but traditional modelling analysis and communication challenges prevent their broad uptake. We employed MSP-specific ocean climate modelling analyses to inform a real-life MSP process; addressing how nature conservation and fisheries could be adapted to CC. We found that the currently planned distribution of these activities may become unsustainable during the policy's implementation due to CC, leading to a shortfall in its sustainability and blue growth targets. Significant, climate-driven ecosystem-level shifts in ocean components underpinning designated sites and fishing activity were estimated, reflecting different magnitudes of shifts in benthic versus pelagic, and inshore versus offshore habitats. Supporting adaptation, we then identified: CC refugia (areas where the ecosystem remains within the boundaries of its present state); CC hotspots (where climate drives the ecosystem towards a new state, inconsistent with each sectors’ present use distribution); and for the first time, identified bright spots (areas where oceanographic processes drive range expansion opportunities that may support sustainable growth in the medium term). We thus create the means to: identify where sector-relevant ecosystem change is attributable to CC; incorporate resilient delivery of conservation and sustainable ecosystem management aims into MSP; and to harness opportunities for blue growth where they exist. Capturing CC bright spots alongside refugia within protected areas may present important opportunities to meet sustainability targets while helping support the fishing sector in a changing climate. By capitalizing on the natural distribution of climate resilience within ocean ecosystems, such climate-adaptive spatial management strategies could be seen as nature-based solutions to limit the impact of CC on ocean ecosystems and dependent blue economy sectors, paving the way for climate-smart MSP

    Harmful Algal Blooms and their impacts on shellfish mariculture follow regionally distinct patterns of water circulation in the western English Channel during the 2018 heatwave

    Get PDF
    Harmful algal blooms (HABs) can have severe ecological, societal and economic impacts upon marine ecosystems, human health and the seafood industry. We evaluated changes in marine plankton communities with prevailing physico-chemical conditions throughout an exceptionally warm summer (2018), to elucidate key factors governing HABs and their impacts on shellfish mariculture in the western English Channel. Despite warm, stable weather conditions and widespread seasonal stratification throughout the summer, divergent plankton community compositions were observed at two rope-grown mussel (Mytilus edulis) farms (St Austell Bay and Lyme Bay) and a long-term ecological research LTER site (Plymouth L4). There were significant differences between sites in the abundances of HAB species, including Dinophysis spp. and Karenia mikimotoi, whose cell counts bloomed in excess of UK Food Standards Agency (FSA) advisory ‘trigger’ levels at Plymouth L4 and St Austell Bay, but not at the Lyme Bay site. The K. mikimotoi bloom occurred over two weeks in August and comprised up to 88% of the standing phytoplankton biomass in St Austell Bay. Dinophysis spp. also bloomed here from May to September, constituting up to 28% of phytoplankton biomass. This protracted bloom resulted in concentrations of Dinophysis toxins 1 & 2 and pectenotoxins and okadaic acid in shellfish, which closed shellfish harvesting operations on farms located in St Austell Bay, and other shellfish sites in the west of the western English Channel (but not in the east of the region). Inter-site differences in the abundances of these and other HAB species were associated with variations in water circulation and co-occurring phytoplankton and zooplankton communities. Furthermore, plankton monitoring data obtained from the L4 site over the past 3 decades showed HAB species (including Dinophysis spp.) with abundances commonly occurring above advisory trigger levels during warmer periods, such as that coinciding with our study. Under projected climate warming these blooms are likely to continue to be governed by regionally distinct patterns of water circulation, which need to be taken into account in marine spatial planning, when assessing the suitability of new shellfish mariculture site

    Inhibition of breathing after surfactant depletion is achieved at a higher arterial PCO(2 )during ventilation with liquid than with gas

    Get PDF
    BACKGROUND: Inhibition of phrenic nerve activity (PNA) can be achieved when alveolar ventilation is adequate and when stretching of lung tissue stimulates mechanoreceptors to inhibit inspiratory activity. During mechanical ventilation under different lung conditions, inhibition of PNA can provide a physiological setting at which ventilatory parameters can be compared and related to arterial blood gases and pH. OBJECTIVE: To study lung mechanics and gas exchange at inhibition of PNA during controlled gas ventilation (GV) and during partial liquid ventilation (PLV) before and after lung lavage. METHODS: Nine anaesthetised, mechanically ventilated young cats (age 3.8 ± 0.5 months, weight 2.3 ± 0.1 kg) (mean ± SD) were studied with stepwise increases in peak inspiratory pressure (PIP) until total inhibition of PNA was attained before lavage (with GV) and after lavage (GV and PLV). Tidal volume (V(t)), PIP, oesophageal pressure and arterial blood gases were measured at inhibition of PNA. One way repeated measures analysis of variance and Student Newman Keuls-tests were used for statistical analysis. RESULTS: During GV, inhibition of PNA occurred at lower PIP, transpulmonary pressure (Ptp) and Vt before than after lung lavage. After lavage, inhibition of inspiratory activity was achieved at the same PIP, Ptp and Vt during GV and PLV, but occurred at a higher PaCO(2 )during PLV. After lavage compliance at inhibition was almost the same during GV and PLV and resistance was lower during GV than during PLV. CONCLUSION: Inhibition of inspiratory activity occurs at a higher PaCO(2 )during PLV than during GV in cats with surfactant-depleted lungs. This could indicate that PLV induces better recruitment of mechanoreceptors than GV
    corecore