375 research outputs found

    Comment on "Hypersharp Resonant Capture of Neutrinos as a Laboratory Probe of the Planck Length"

    Full text link
    In Phys. Rev. Lett. 102, 091804 (2009) [arXiv:0903.0787], R.S. Raghavan claims that due to motional averaging by lattice vibrations, 18.6 keV electron antineutrinos emitted/captured without recoil from 2-body decay in the 3H/3He system embedded in Nb metal will be observable with natural width. In this comment we argue that 1) stochastic relaxation processes and 2) inhomogeneities in the metal matrices will prevent the generation of antineutrinos with natural width in the 3H/3He system, 3) the different lattice-deformation energies of 3H and 3He in the Nb matrix will drastically decrease the fraction of phononless emission/detection of antineutrinos, 4) the age itself of the 3H source does not affect the linewidth

    Recoilless Resonant Emission and Detection of Electron Antineutrinos

    Full text link
    Recoilless resonant capture of monoenergetic electron antineutrinos (Moessbauer antineutrinos) emitted in bound-state beta-decay in the system 3H - 3He is discussed. The recoilfree fraction including a possible phonon excitation due to local lattice expansion and contraction at the time of the nuclear transition, homogeneous and inhomogeneous line broadening, and the relativistic second-order Doppler effect are considered. It is demonstrated that homogeneous line broadening is essential due to stochastic magnetic relaxation processes in a metallic lattice. Inhomogeneous line broadening plays an equally important role. An essential issue which has been overlooked up to now, is an energy shift of the resonance line due to the direct influence of the binding energies of the 3H and 3He atoms in the lattice on the energy of the electron antineutrinos. This energy shift as well as the second-order Doppler shift exhibit variations in a non-perfect (inhomogeneous) lattice and may seriously jeopardize the observation of Moessbauer antineutrinos. If successful in spite of these enormous difficulties, Moessbauer antineutrino experiments could be used to gain new and deep insights into the nature of neutrino oscillations, determine the neutrino mass hierarchy as well as up to now unknown oscillation parameters, search for sterile neutrinos, and measure the gravitational redshift of electron antineutrinos in the field of the Earth.Comment: To appear in Journal of Physics: Conference Series; Proceedings of Neutrino 2008, Christchurch, New Zealan

    Scaling up the effects of inbreeding depression from individuals to metapopulations

    Get PDF
    Abstract Inbreeding is common in nature, and many laboratory studies have documented that inbreeding depression can reduce the fitness of individuals. Demonstrating the consequences of inbreeding depression on the growth and persistence of populations is more challenging because populations are often regulated by density- or frequency-dependent selection and influenced by demographic and environmental stochasticity. A few empirical studies have shown that inbreeding depression can increase extinction risk of local populations. The importance of inbreeding depression at the metapopulation level has been conjectured based on population-level studies but has not been evaluated. We quantified the impact of inbreeding depression affecting the fitness of individuals on metapopulation persistence in heterogeneous habitat networks of different sizes and habitat configuration in a context of natural butterfly metapopulations. We developed a spatial individual-based simulation model of metapopulations with explicit genetics. We used Approximate Bayesian Computation to fit the model to extensive demographic, genetic, and life-history data available for the well-studied Glanville fritillary butterfly (Melitaea cinxia) metapopulations in the Åland islands in SW Finland. We compared 18 semi-independent habitat networks differing in size and fragmentation. The results show that inbreeding is more frequent in small habitat networks, and consequently, inbreeding depression elevates extinction risks in small metapopulations. Metapopulation persistence and neutral genetic diversity maintained in the metapopulations increase with the total habitat amount in and mean patch size of habitat networks. Dispersal and mating behavior interact with landscape structure to determine how likely it is to encounter kin while looking for mates. Inbreeding depression can decrease the viability of small metapopulations even when they are strongly influenced by stochastic extinction-colonization dynamics and density-dependent selection. The findings from this study support that genetic factors, in addition to demographic factors, can contribute to extinctions of small local populations and also of metapopulations. This article is protected by copyright. All rights reserved.Peer reviewe

    Fabrication of Pt/Ru Nanoparticle Pair Arrays with Controlled Separation and their Electrocatalytic Properties

    Get PDF
    Aiming at the investigation of spillover and transport effects in electrocatalytic reactions on bimetallic catalyst electrodes, we have prepared novel, nanostructured electrodes consisting of arrays of homogeneously distributed pairs of Pt and Ru nanodisks of uniform size and with controlled separation on planar glassy carbon substrates. The nanodisk arrays (disk diameter approximate to 60 nm) were fabricated by hole-mask colloidal lithography; the separation between pairs of Pt and Ru disks was varied from -25 nm (overlapping) via +25 nm to +50 nm. Morphology and (surface) composition of the Pt/Ru nanodisk arrays Were characterized by scanning electron microscopy, energy dispersive X-ray analysis, and X-ray Photoelectron spectroscopy, the electrochemical/electrocatalytic properties were explored by cyclic voltammetry, COad monolayer oxidation ("COad stripping"), and potentiodynamic hydrogen oxidation. Detailed analysis of the 2 COad oxidation peaks revealed that on all bimetallic pairs these cannot be reproduced by superposition of the peaks obtained on electrodes with Pt/Pt or Ru/Ru pairs, pointing to effective Pt-Ru interactions even between rather distant pairs (50 nm). Possible reasons for this observation and its relevance for the understanding of previous reports of highly active catalysts with separate Pt and Ru nanoparticles are discussed. The results clearly demonstrate that this preparation method is perfectly suited for fabrication of planar model electrodes with well-defined arrays of bimetallic nanodisk pairs, which opens up new possibilities for model studies of electrochemical/electrocatalytic reactions

    Organic carbon content and carbon isotope variations across the Permo-Triassic boundary in the Gartnerkofel-1 borehole, Carnic Alps, Austria

    Get PDF
    The Gartnerkofel borehole is one of the most thoroughly studied and described Permo-Triassic sections in the world. Detailed bulk organic carbon isotope studies show a negative base shift from − 24‰ to − 28‰ in the Latest Permian which latter value persists into the Earliest Triassic after which it decreases slightly to − 26‰. Two strongly negative peaks of > − 38‰ in the Latest Permian and a lesser peak of − 31‰ in the Early Triassic are too negative to be due to a greater proportion of more negative organic matter and must be due to very negative methane effects. The overall change to more negative values across the Bulla/Tesero boundary fits the relative rise in sea level for this transition based on the facies changes. A positive shift in organic carbon isotope values at the Late Permian Event Horizon may be due to an increase in land-derived organic detritus at this level—a feature shown by all Tethyan Permo-Triassic boundary sections though these other sections do not have the same values. Carbonate carbon isotope trends are similar in all sections dropping by 2–3 units across the Permo-Triassic boundary. Gartnerkofel carbonate oxygen values are surprisingly, considering the ubiquitous dolomitization, compatible with values elsewhere and indicate reasonable tropical temperatures of 60 °C in the Latest Permian sabkhas to 20–40 °C in the overlying marine transition beds. Increased land-derived input at the Late Permian Event Horizon may be due to offshore transport by tsunamis whose deposits have been recognized in India at this level

    On Predicting Mössbauer Parameters of Iron-Containing Molecules with Density-Functional Theory

    Get PDF
    The performance of six frequently used density functional theory (DFT) methods (RPBE, OLYP, TPSS, B3LYP, B3LYP*, and TPSSh) in the prediction of Mössbauer isomer shifts(δ) and quadrupole splittings (ΔEQ) is studied for an extended and diverse set of Fe complexes. In addition to the influence of the applied density functional and the type of the basis set, the effect of the environment of the molecule, approximated with the conducting-like screening solvation model (COSMO) on the computed Mössbauer parameters, is also investigated. For the isomer shifts the COSMO-B3LYP method is found to provide accurate δ values for all 66 investigated complexes, with a mean absolute error (MAE) of 0.05 mm s–1 and a maximum deviation of 0.12 mm s–1. Obtaining accurate ΔEQ values presents a bigger challenge; however, with the selection of an appropriate DFT method, a reasonable agreement can be achieved between experiment and theory. Identifying the various chemical classes of compounds that need different treatment allowed us to construct a recipe for ΔEQ calculations; the application of this approach yields a MAE of 0.12 mm s–1 (7% error) and a maximum deviation of 0.55 mm s–1 (17% error). This accuracy should be sufficient for most chemical problems that concern Fe complexes. Furthermore, the reliability of the DFT approach is verified by extending the investigation to chemically relevant case studies which include geometric isomerism, phase transitions induced by variations of the electronic structure (e.g., spin crossover and inversion of the orbital ground state), and the description of electronically degenerate triplet and quintet states. Finally, the immense and often unexploited potential of utilizing the sign of the ΔEQ in characterizing distortions or in identifying the appropriate electronic state at the assignment of the spectral lines is also shown

    Gaining the PROMIS perspective from children with nephrotic syndrome: a Midwest pediatric nephrology consortium study

    Get PDF
    Background and objectives Nephrotic syndrome (NS) represents a common disease in pediatric nephrology typified by a relapsing and remitting course and characterized by the presence of edema that can significantly affect the health-related quality of life in children and adolescents. The PROMIS pediatric measures were constructed to be publically available, efficient, precise, and valid across a variety of diseases to assess patient reports of symptoms and quality of life. This study was designed to evaluate the ability of children and adolescents with NS to complete the PROMIS assessment via computer and to initiate validity assessments of the short forms and full item banks in pediatric NS. Successful measurement of patient reported outcomes will contribute to our understanding of the impact of NS on children and adolescents. Design This cross-sectional study included 151 children and adolescents 8-17 years old with NS from 16 participating institutions in North America. The children completed the PROMIS pediatric depression, anxiety, social-peer relationships, pain interference, fatigue, mobility and upper extremity functioning measures using a web-based interface. Responses were compared between patients experiencing active NS (n = 53) defined by the presence of edema and patients with inactive NS (n = 96) defined by the absence of edema. Results All 151 children and adolescents were successfully able to complete the PROMIS assessment via computer. As hypothesized, the children and adolescents with active NS were significantly different on 4 self-reported measures (anxiety, pain interference, fatigue, and mobility). Depression, peer relationships, and upper extremity functioning were not different between children with active vs. inactive NS. Multivariate analysis showed that the PROMIS instruments remained sensitive to NS disease activity after adjusting for demographic characteristics. Conclusions Children and adolescents with NS were able to successfully complete the PROMIS instrument using a web-based interface. The computer based pediatric PROMIS measurement effectively discriminated between children and adolescents with active and inactive NS. The domain scores found in this study are consistent with previous reports investigating the health-related quality of life in children and adolescents with NS. This study establishes known-group validity and feasibility for PROMIS pediatric measures in children and adolescents with NS
    corecore