798 research outputs found

    Determining selection across heterogeneous landscapes: a perturbation-based method and its application to modeling evolution in space

    Get PDF
    Spatial structure can decisively influence the way evolutionary processes unfold. Several methods have thus far been used to study evolution in spatial systems, including population genetics, quantitative genetics, momentclosure approximations, and individual-based models. Here we extend the study of spatial evolutionary dynamics to eco-evolutionary models based on reaction-diffusion equations and adaptive dynamics. Specifically, we derive expressions for the strength of directional and stabilizing/disruptive selection that apply in both continuous space and to metacommunities with symmetrical dispersal between patches. For directional selection on a quantitative trait, this yields a way to integrate local directional selection across space and determine whether the trait value will increase or decrease. The robustness of this prediction is validated against quantitative genetics. For stabilizing/disruptive selection, we show that spatial heterogeneity always contributes to disruptive selection and hence always promotes evolutionary branching. The expression for directional selection is numerically very effi- cient, and hence lends itself to simulation studies of evolutionary community assembly. We illustrate the application and utility of the expressions for this purpose with two examples of the evolution of resource utilization. Finally, we outline the domain of applicability of reaction-diffusion equations as a modeling framework and discuss their limitations

    Comparison of Oxygen Adsorption and Platinum Dissolution in Acid and Alkaline Solutions Using Electrochemical Quartz Crystal Microbalance

    Get PDF
    Platinum (Pt) is a widely used electrocatalyst material in fuel cells and electrolysers. Proton exchange membrane (PEM) fuel cells and electrolysis operate under highly acidic conditions whereas the more recently developed anion exchange membrane (AEM) processes take place under alkaline conditions. Pt dissolution and Pt oxidation during operation and varying potentials has been studied mainly for the acidic PEM and less for the alkaline AEM. This study presents a comparison of Pt dissolution and Pt oxidation in 0.5 M H2SO4 and 1 M KOH using electrochemical quartz crystal microbalance (EQCM) on Pt thin films. Physical characterisation using electron microscopy and atomic force microscopy (AFM) revealed small, yet significant differences in the Pt film surface structure, which is related to differences in measured electrochemical surface area (ECSA). The mass increase from adsorption of oxygenated species and Pt oxidation is higher in alkaline conditions compared to in acid while dissolution of Pt is similar

    GUT Inflation and Proton Decay after WMAP5

    Full text link
    We employ Coleman-Weinberg and Higgs potentials to implement inflation in non-supersymmetric grand unified theories (GUTs) such as SU(5) and SO(10). To realize a scalar spectral index close to 0.96, as indicated by the most recent WMAP 5-year anlaysis, the energy scale of observable inflation turns out to be of order 101610^{16} GeV. This implies a GUT symmetry breaking scale of similar magnitude, and proton lifetime of order 103410^{34}-103810^{38} years. In some SO(10) models with axion dark matter, the scalar leptoquark boson exchange leads to proton decay with a lifetime of order 103410^{34}-103510^{35} years.Comment: 15 pages, 4 figure

    Development and operation of a pixel segmented liquid-filled linear array for radiotherapy quality assurance

    Full text link
    A liquid isooctane (C8_{8}H18_{18}) filled ionization linear array for radiotherapy quality assurance has been designed, built and tested. The detector consists of 128 pixels, each of them with an area of 1.7 mm ×\times 1.7 mm and a gap of 0.5 mm. The small pixel size makes the detector ideal for high gradient beam profiles like those present in Intensity Modulated Radiation Therapy (IMRT) and radiosurgery. As read-out electronics we use the X-Ray Data Acquisition System (XDAS) with the Xchip developed by the CCLRC. Studies concerning the collection efficiency dependence on the polarization voltage and on the dose rate have been made in order to optimize the device operation. In the first tests we have studied dose rate and energy dependences, and signal reproducibility. Dose rate dependence was found lower than 2.5 % up to 5 Gy min−1^{-1}, and energy dependence lower than 2.1 % up to 20 cm depth in solid water. Output factors and penumbras for several rectangular fields have been measured with the linear array and were compared with the results obtained with a 0.125 cm3^{3} air ionization chamber and radiographic film, respectively. Finally, we have acquired profiles for an IMRT field and for a virtual wedge. These profiles have also been compared with radiographic film measurements. All the comparisons show a good correspondence. Signal reproducibility was within a 2% during the test period (around three months). The device has proved its capability to verify on-line therapy beams with good spatial resolution and signal to noise ratio.Comment: 16 pages, 12 figures Submitted to Phys. Med. Bio

    Editorial: Disciplinary aesthetics: the role of taste and affect for teaching and learning specific school subjects

    Get PDF
    Editorial on the Research Topic: Disciplinary aesthetics: the role of taste and affect for teaching and learning specific school subject

    Oxygen reduction reaction kinetics on a Pt thin layer electrode in AEMFC

    Get PDF
    The study of the catalytic activity in a fuel cell is challenging, as mass transport, gas crossover and the counter electrode are generally interfering. In this study, a Pt electrode consisting of a thin film deposited on the gas diffusion layer was employed to study the oxygen reduction reaction (ORR) in an operating Anion Exchange Membrane Fuel Cell (AEMFC). The 2D Pt electrode was assembled together with a conventional porous Pt/C counter electrode and an extra Pt/C layer and membrane to reduce the H2 crossover. Polarization curves at different O2 partial pressures were recorded and the resulting reproducible ORR activities were normalized with respect to the active surface area (ECSA), obtained by CO stripping. As expected, decreasing the O2 partial pressure results in a negative shift in open circuit voltage (OCV), cell voltage and maximum attainable current density. For cell voltages above 0.8 V a fairly constant Tafel slope of 60 mV dec−1 was recorded but at lower voltages the slope increases rapidly. The observed Tafel slope can be explained by a theoretical model with an associative mechanism where charge- and proton-transfer steps are decoupled, and the proton transfer is the rate-determining step. A reaction order of 1 with respect to O2 was obtained at 0.65 V which corresponds well with the mechanism suggested above. Based on the obtained catalyst activities, the electrode performance is comparable to good porous electrodes found in the field. The methodology presented in this study is expected to be useful in future kinetic studies of other catalysts for AEMFC

    Enhanced oxygen reduction activity with rare earth metal alloy catalysts in proton exchange membrane fuel cells

    Get PDF
    Alloying platinum is an approach to increase the oxygen reduction reaction (ORR) activity and at the same time reduce the amount of precious platinum catalyst in proton exchange membrane fuel cells (PEMFC). In this work the cathode activity of thin films of rare earth metals (REM) alloys, Pt Y, Pt Gd and Pt Tb, produced by sputter deposition onto gas diffusion layers, are evaluated in a fuel cell by means of polarization curves in O /H , and cyclic- and CO-stripping voltammetry in N /5% H . Prior to evaluation, the model electrodes were acid-treated to obtain a Pt skin covering the PtREM alloy bulk, as was revealed by energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The core shell alloys of Pt Y and Pt Gd catalysts show a specific activity enhancement at 0.9 V of 2.5 times compared to pure Pt. The slightly lower enhancement factor of 2.0 for Pt Tb is concluded to be due to leaching of the REM, that resulted in a thicker, and subsequently less strained, Pt overlayer. The high activity, combined with the minor changes in surface composition, achieved in the fuel cell environment shows that PtREM core shell catalysts are promising for the cathode reaction in PEMFC

    Hsp72 (HSPA1A) Prevents Human Islet Amyloid Polypeptide Aggregation and Toxicity: A New Approach for Type 2 Diabetes Treatment

    Get PDF
    Type 2 diabetes is a growing public health concern and accounts for approximately 90% of all the cases of diabetes. Besides insulin resistance, type 2 diabetes is characterized by a deficit in β-cell mass as a result of misfolded human islet amyloid polypeptide (h-IAPP) which forms toxic aggregates that destroy pancreatic β-cells. Heat shock proteins (HSP) play an important role in combating the unwanted self-association of unfolded proteins. We hypothesized that Hsp72 (HSPA1A) prevents h-IAPP aggregation and toxicity. In this study, we demonstrated that thermal stress significantly up-regulates the intracellular expression of Hsp72, and prevents h-IAPP toxicity against pancreatic β-cells. Moreover, Hsp72 (HSPA1A) overexpression in pancreatic β-cells ameliorates h-IAPP toxicity. To test the hypothesis that Hsp72 (HSPA1A) prevents aggregation and fibril formation, we established a novel C. elegans model that expresses the highly amyloidogenic human pro-IAPP (h-proIAPP) that is implicated in amyloid formation and β-cell toxicity. We demonstrated that h-proIAPP expression in body-wall muscles, pharynx and neurons adversely affects C. elegans development. In addition, we demonstrated that h-proIAPP forms insoluble aggregates and that the co-expression of h-Hsp72 in our h-proIAPP C. elegans model, increases h-proIAPP solubility. Furthermore, treatment of transgenic h-proIAPP C. elegans with ADAPT-232, known to induce the expression and release of Hsp72 (HSPA1A), significantly improved the growth retardation phenotype of transgenic worms. Taken together, this study identifies Hsp72 (HSPA1A) as a potential treatment to prevent β-cell mass decline in type 2 diabetic patients and establishes for the first time a novel in vivo model that can be used to select compounds that attenuate h-proIAPP aggregation and toxicity

    Mossbauer spectroscopy study of the "mysterious" magnetic transition in lambda-(BETS)2FeCl4

    Full text link
    The compound lambda-(BETS)2FeCl4 provides an effective demonstration of the interaction of pi-conduction electron and d-electron localized moment systems in molecular crystalline materials where antiferromagnetic insulating and magnetic field induced superconducting states can be realized. The metal-insulator transition has been thought to be cooperative, involving both the itinerant pi- electron and localized d-electron spins where antiferromagnetic order appears in both systems simultaneously. However, recent specific heat data has indicated otherwise [Akiba et al., J. Phys. Soc. Japan 78,033601(2009)]: although the pi-electron system orders antiferromagnetically and produces a metal-insulator transition, a "mysterious" paramagnetic d-electron state remains. We report 57Fe Mossbauer measurements that support the paramagnetic model, provided the d-electron spins remain in a fast relaxation state below the transition. From the measured hyperfine fields, we also determine the temperature dependence of the pi-d electron exchange field.Comment: 10 pages, 3 figures, 1 tabl
    • …
    corecore