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Abstract

Spatial structure can decisively influence the way evolutionary processes
unfold. Several methods have thus far been used to study evolution in spa-
tial systems, including population genetics, quantitative genetics, moment-
closure approximations, and individual-based models. Here we extend the
study of spatial evolutionary dynamics to eco-evolutionary models based on
reaction-diffusion equations and adaptive dynamics. Specifically, we derive
expressions for the strength of directional and stabilizing/disruptive selec-
tion that apply in both continuous space and to metacommunities with
symmetrical dispersal between patches. For directional selection on a quan-
titative trait, this yields a way to integrate local directional selection across
space and determine whether the trait value will increase or decrease. The
robustness of this prediction is validated against quantitative genetics. For
stabilizing/disruptive selection, we show that spatial heterogeneity always
contributes to disruptive selection and hence always promotes evolutionary
branching. The expression for directional selection is numerically very effi-
cient, and hence lends itself to simulation studies of evolutionary community
assembly. We illustrate the application and utility of the expressions for this
purpose with two examples of the evolution of resource utilization. Finally,
we outline the domain of applicability of reaction-diffusion equations as a
modeling framework and discuss their limitations.
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Introduction

Heterogeneous landscapes provide both spatial variation in selective regimes and oppor-
tunities for geographic isolation. The notion that spatial heterogeneity should promote
evolutionary diversification is therefore intuitively appealing. Although this intuition
is sometimes foiled (Day 2001; Ajar 2003), several individual-based simulation and
population genetics studies do indeed suggest that spatial structure can contribute to
evolutionary branching and speciation (Felsenstein 1976; Doebeli and Dieckmann 2003;
Servedio and Gavrilets 2004; Gavrilets and Vose 2005; Haller et al. 2013). However,
understanding the interactions between spatial structure, population dynamics, and
evolutionary dynamics has proved challenging. It is well recognized that the direction
and magnitude of selection experienced by a population in a heterogeneous landscape
depends both on the spatial pattern of local selection pressures and on the movement
rates of individuals and genes across the landscape (Thompson 1999; Blondel et al.
2006). It is far from obvious under which circumstances this interplay of local selec-
tion, resulting from local ecological dynamics, and homogenizing dispersal results in
directional selection, evolutionary stasis, or evolutionary diversification. It has, for
example, been conjectured that mild geographical population structure may – para-
doxically – be critical to the maintenance of evolutionary stasis at the species level
over longer periods of time (Eldredge et al. 2005), in spite of widespread directional
local selection (Kingsolver and Diamond 2011). Clearly, there is a need for a theory of
evolution in space that can describe how spatially integrated selection in heterogeneous
environments is driven by the interplay of local ecological dynamics and dispersal.

The development of such a theory has proceeded along several venues. The per-
haps earliest attempts trace back to diallelic one-locus models exploring the invasion of
beneficial alleles and the evolution of polymorphisms in a continuous one-dimensional
habitat (Fisher 1937; Haldane 1948; Fisher 1950; Slatkin 1973). Several extensions of
these models have been made to include more than one locus (Slatkin 1975; Barton
1983), continuous polygenic characters (Slatkin 1978; Barton 1999), or density depen-
dence and multidimensional space (Nagylaki 1975) among other examples. However, in
these studies, the ecological dynamics are typically very simple and selection pressures
are prescribed rather than derived from density- and frequency-dependent interactions
among phenotypes.

Conversely, models encompassing more realistic ecological interactions have typi-
cally neglected the underlying genetics altogether in favor of studying the evolution of
phenotypes directly. A frequently employed approach has been to use spatially explicit,
individual-based models that compute trait-dependent reproduction and inheritance di-
rectly based on various rules (Doebeli and Dieckmann 2003; Gavrilets and Vose 2005;
Mágori et al. 2005; Birand et al. 2012; Haller et al. 2013; Kubisch et al. 2014). These
models exhibit potentially great ecological realism and have broad applicability but
suffer from two limitations: they are computationally very demanding and the results
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derived from these models are often difficult to analyze and check for robustness (but
see the discussion section on moment-closure approximations for further description
and references).

Another approach to the inclusion of more realistic ecological interactions is to ex-
tend ecological models based on reaction-diffusion equations (a specific class of partial
differential equations; see e.g., Britton et al. 1986; Holmes et al. 1994; Cantrell and
Cosner 2004) to an evolutionary setting. Eco-evolutionary processes can then be stud-
ied using either a quantitative genetics (Lande 1979; Lande and Arnold 1983) or an
adaptive-dynamics (Metz et al. 1992; Dieckmann and Law 1996; Geritz et al. 1998)
framework. The former accounts for standing variation in trait values and can be used
to answer questions about the rate of evolutionary change and the degree of spatial vari-
ation of trait values within species caused by limited gene flow. These questions have
already been touched upon by Kirkpatrick and Barton (1997), Case and Taper (2000)
and Norberg et al. (2012) among other studies. Adaptive dynamics, in turn, is concerned
with mutation-driven evolution and is typically used to determine population-level se-
lection gradients and phenomena such as evolutionary branching. These questions have
received very little attention in the setting of spatial adaptive dynamics (but see e.g.,
Mizera and Meszéna 2003; Troost et al. 2005). In particular, general mathematical
expressions describing directional as well as stabilizing or disruptive selection have not
yet been developed for reaction-diffusion models in continuous space. This is unfor-
tunate, as some questions, such as studying the direction of evolution of a trait in a
spatially heterogeneous environment or how this spatial heterogeneity affects the po-
tential for disruptive selection and subsequent diversification can be easier to address
in the reaction-diffusion adaptive-dynamics framework than with the aforementioned
approaches.

In this paper we develop central parts of an adaptive-dynamics theory of evolution in
space for populations whose ecological dynamics are well described by reaction-diffusion
equations, or certain metapopulation models. Specifically, we derive expressions for di-
rectional and stabilizing/disruptive selection acting on a quantitative phenotypic trait
in organisms inhabiting a spatially heterogeneous landscape. These expressions are ex-
act in the sense that they introduce no further approximations beyond the conceptual
ones that underly the use of adaptive dynamics and reaction-diffusion equations. Our
effort serves two primary purposes: First, it enables us to draw general conclusions
about the evolution of traits in such systems. Specifically, we determine how local
selection pressures should be used in a weighted average across space to ascertain the
population-level direction of selection of quantitative traits and show how this result
can be understood in terms of reproductive value. We test that this result is consistent
with a quantitative genetics model in the limit of small standing genetic variation. We
also show that spatial structure always contributes to disruptive selection in the ab-
sence of directional selection. Second, the derived expressions enable efficient numerical
investigation of spatial evolutionary dynamics in eco-evolutionary systems described by
reaction-diffusion equations. We illustrate the application and utility of the developed
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techniques in two examples of the evolution of resource utilization in a heterogeneous
environment. Finally, we discuss the limitations of reaction-diffusion equations as a
modeling framework and delineate the range of eco-evolutionary systems over which
they are applicable.

Evolutionary dynamics in spatially structured populations

Imagine a population inhabiting a heterogeneous landscape over which selection pres-
sures for a quantitative trait, such as the size of a body part, varies. In certain regions,
selection favors larger trait values while in others it favors smaller trait values than the
current population average. Will selection result in an increase or a decrease of the mean
trait value across the population? The intuitive approach of simply averaging selection
across all members of the populations gives the wrong result. Below we show that one
needs to take a particular weighted average with a disproportionate contribution from
highly populated areas. We demonstrate that the expression for directional selection is
valid in the frameworks of both adaptive dynamics and quantitative genetics, provided
that standing genetic variation is small.

Invasion fitness in spatially structured populations

Before we start our analysis of selection in reaction-diffusion equations, we present a
brief summary of adaptive-dynamics theory (Metz et al. 1992; Dieckmann and Law
1996; Geritz et al. 1998), which is a framework for studying evolutionary processes by
calculating the so-called ‘invasion fitness’ of a rare mutant phenotype in a community of
one or more resident phenotype(s) at equilibrium. This invasion fitness is the long term
per capita growth rate of the mutant while it is still rare compared to the resident(s)
and is thus a measure of the mutant’s ability to cope with the environment set by
the resident(s) while its own influence on the environment is still negligible. Write Ar
and Am for the densities of a resident and a mutant phenotype respectively, and let
χr and χm be traits that uniquely characterize each of the two phenotypes (we shall
throughout the text use subscripts r and m for quantities pertaining to residents and
mutants, respectively). In a spatially unstructured system the growth of the resident
population is governed by:

dAr

dt = G(Er, χr)Ar, (1)

where the net per capita growth rate G depends on the environment set by the resident,
Er = E(χr), and on the resident’s trait value. When the resident is at equilibrium, with
density A∗r setting an equilibrium environment E∗r , and the mutant is still rare enough
to not affect the environment, the mutant’s growth rate can be expressed as:

dAm

dt = G(E∗r , χm)Am. (2)
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The above equation is a linear, first order, ordinary differential equation. The solution
is

Am(t) = c exp(G(E∗r , χm) t ), (3)
where c is a constant representing the initial density of the mutant. This solution
describes the invasion well as long as the mutant remains rare relative to the resident.
From this, we see that the mutant density will increase if G is positive, and decline if
G is negative. Thus G(E∗r , χm), the exponential growth rate of the mutant while still
rare, is considered the invasion fitness of the mutant. For a given resident trait, we can
think of G as being a function of the trait value χ and calculate the directional selection
acting on a resident phenotype by computing how invasion fitness changes with changes
in the trait value. In adaptive dynamics the selection gradient, defined as

D(χr) = ∂G(E∗r , χ)
∂χ

∣∣∣∣∣
χ=χr

, (4)

is the measure of the strength and direction of this directional selection.

In a spatially heterogeneous system, the density of a spatially structured population
depends on both time and space, and can be denoted by A(t,x), where x = (x1, ..., xn)
describes the location in n = 1, 2, or 3 spatial dimensions. We assume that the ecological
dynamics can be described by a partial differential equation

∂A(t,x)
∂t

= F (E(χ),x, χ)A. (5)

Here, the local rate of change is described by a differential operator F , which typically
depends not only on the local population density A(x), the spatial coordinate x, and the
trait under selection, χ, but also contain spatial derivatives describing passive transport
or active movement in space. One important class of such systems are reaction-diffusion
systems, where the differential operator takes the form:

F (E(χ),x, χ)A = G(E(χ),x, χ)A+ d(χ)∆A. (6)

Here the function G describes the density-dependent net growth of the phenotypes
at different points in space (mediated through their effect on the environment E), d
is the diffusivity, and ∆A = ∂2A

∂x2
1

+ ... + ∂2A
∂x2

n
is the Laplacian of A, which describes

the random movement or transport of individuals from more to less densely populated
locations in all n directions. When we derive in the next section an expression for
the selection gradient in heterogeneous space we initially consider only such random
(diffusive) movement. Further down, in Example 2, we extend the approach to include
constant directional movement (advection).

Much like the non-spatial case, considering the case of a mutant that is initially very
rare results in a linear partial differential equation describing the mutant’s population
growth:

∂Am

∂t
= F (E∗r ,x, χm)Am. (7)
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This equation cannot be solved in the same way as the ordinary differential equation
of the non-spatial case, since F contains partial spatial derivatives. There is, however,
by the theory of linear differential equations, an expression for the solutions,

Am(x, t) =
∞∑
i=0

cie
λitAi(x). (8)

Each term in the above sum is a different possible solution to Eq. 7, where each solution
assumes a specific (temporally constant) shape of the spatial density distribution of in-
dividuals Ai(x), while the total density of individuals is initially determined by ci and
subsequently increases or decreases over time at an exponential rate determined by the
exponent λi. The functions Ai(x) and numbers λi are the so called eigenfunctions and
eigenvalues of the operator F , and solve the equation FAi(x) = λiAi(x). The general
solution, Eq. 8, emerges from the combined contributions of these specific solutions.
Eventually, the term with the largest λi will dominate and determine the long-term
exponential growth rate of the mutant population. This quantity, known as the domi-
nant eigenvalue, is written λd and is the natural generalization of invasion fitness for a
mutant in a spatially structured system.

A perturbation-based method for calculating selection across heterogeneous
space

Having introduced the concept of invasion fitness for spatially structured populations,
we next derive expressions for disruptive/stabilizing selection in populations that follow
reaction-diffusion dynamics. The approach rests on the assumption in adaptive dynam-
ics that single mutations have small phenotypic effects. Hence, the selection gradient is
essentially describing first order, or weak, selection. This is not in itself a new approach
(especially for matrix models, see e.g., Van Baalen and Rand 1998; Caswell 2001; Rous-
set 2004), but by using perturbation theory for operators describing reaction-diffusion
dynamics in systems with absorptive, reflective, or periodic boundaries, we are able to
compute an expression for the selection gradient that does not involve any explicit com-
putations of eigenvalues or vectors. This has two major benefits. First, it allows us to
evaluate selection based only on the ecological equilibrium dynamics, which means that
some immediate, general conclusions can be drawn regarding the direction in which a
trait will evolve by averaging local selection gradients. Second, it provides great savings
in terms of numerical computations of selection gradients when simulating discretized
versions of evolutionary reaction-diffusion systems. This approach likewise yields some
new insight into how environmental heterogeneity contributes to disruptive selection,
and how diversification is affected by this additional disruptive selection.

Perturbation theory can be used to determine directional selection. If an unknown
differential operator can be expressed as the sum of a known operator plus some small
disturbance, it is often possible to calculate approximations of the unknown operator.
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For instance, we know that the eigenvalue of the operator F of Eq. 7 must be zero when
it is operating on the resident phenotype at ecological equilibrium, since the equilibrium
density by definition will neither grow nor decline. As such Eq. 7 will be

0 = ∂A∗r
∂t

= FA∗r . (9)

In a reaction-diffusion system like Eq. 6, knowing that the operator acting on the
equilibrium density of the resident has a dominant eigenvalue of zero, we can perform
perturbation calculations to derive an expression for the selection gradient D(χr) for a
resident phenotype in ecological equilibrium (see Appendix A for details):

D(χr) = 1∫
A∗2r dx

∫ A∗2r
∂G(E∗r ,x, χ)

∂χ

∣∣∣∣∣
χr

dx− ∂d(χ)
∂χ

∣∣∣∣∣
χr

∫
|∇A∗r |2dx

 . (10)

Eq. 10 describes the selection gradient for a resident phenotype with equilibrium density
A∗r , in the equilibrium environment E∗r set by the resident. ∂G(E∗r ,x, χ)/∂χ|χr describes
how per capita growth changes, and ∂d(χ)/∂χ|χr how diffusivity changes with changing
trait. The integral is over the entire available space. The gradient ∇A∗r is a vector
describing the slope of the resident’s density distribution in each spatial direction, and
|∇A∗r |, the Euclidian vector norm of ∇A∗r , is the maximum rate of change, which is
always in the direction of the gradient.

From Eq. 10 we can draw general conclusions about directional selection in spatial
systems. First, if diffusivity is trait independent i.e., if ∂d/∂χ = 0, then Eq. 10 simplifies
to

D(χr) = 1∫
A∗2r dx

∫
A∗2r

∂G(E∗r ,x, χ)
∂χ

∣∣∣∣∣
χr

dx. (11)

In the complete absence of diffusion ∂G(E∗r ,x, χ)/∂χ|χr is the local selection gradient
at each point in space. The selection gradient acting on the population of the resident
phenotype as a whole (described by Eq. 11) can thus be interpreted as a weighted av-
erage of local selection gradients. The weights are A∗2r , meaning that the contributions
to the selection gradient at points in space where the resident is abundant are dispro-
portionately stronger than where it is rare. This squared term can be understood by
analogy to a classical result for sensitivity analysis of matrix models, where the sen-
sitivity of growth rate depends on both the right and left eigenvectors, corresponding
respectively to the stable population distribution and the individual reproductive value
(Caswell 2001). In the reaction-diffusion equations we investigate, these right and left
eigenvectors are identical due to the spatial symmetry of dispersal. Each is given by
A∗(x), resulting in the squared weighting term in Eq. 11 (Appendix A).

Second, if instead the trait does not affect local fitness but only the dispersal rate,
i.e., if ∂G/∂χ = 0, Eq. 10 simplifies to:

D(χr) = − 1∫
A∗2r dx

∂d(χ)
∂χ

∣∣∣∣∣
χr

∫
|∇A∗r |2dx. (12)
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Two conclusions directly follow. First, since |∇A∗r | is the local slope of the resident’s
density distribution, selection on diffusivity depends on the degree to which the resident
is heterogeneously distributed in the landscape. Hence, if the distribution of the resident
is completely homogeneous, then the selection gradient will be zero. Second, since both∫
A∗2r dx and

∫
|∇A∗r |2dx are always positive, selection will always be for lower diffusivity,

which is in line with earlier investigations by Hastings (1983) and Dockery et al. (1998).

Eq. 10 is valid for reaction-diffusion equations with periodic, absorptive, and reflec-
tive boundary conditions, or some combination thereof. In Appendices A and E, this
is extended to a larger class of systems.

Sympatric and parapatric sources of disruptive selection can be distinguished. When
directional selection ceases and the selection gradient is zero, the resident is at what
is known as an evolutionarily singular point. Here, the second derivative of invasion
fitness with respect to a mutant’s trait value must be determined to evaluate whether
the evolutionarily singular point is a fitness maximum (evolutionarily stable strategy),
at which no more evolution will occur, or a fitness minimum, at which a phenotype will
split into two. A full account of selection at an evolutionarily singular strategy is given
in Appendix B. Here, we present the three most important conclusions that arise from
this analysis:

First, all other things equal, spatial heterogeneity in local selection regimes always
promotes evolutionary branching and diversification. The reason is that the possibility
for the mutant to assume other spatial distributions than the resident’s always con-
tributes positively to the second derivative of its invasion fitness (Eq. B.5).

Second, by splitting the equation for disruptive/stabilizing selection (Eq. B.5) into
two terms, two cases of evolutionary branching can be distinguished which we with a
slight abuse of terminology call sympatric and parapatric diversification. In the first
case, when the primary source of disruptive selection is the spatially averaged ecological
dynamics, a phenotype can branch into two phenotypes with exactly the same spatial
distribution as their progenitor. In the second case, when the only source of disruptive
selection is the environmental heterogeneity, i.e., spatial variation in directional selec-
tion, at least one of the new phenotypes must have a different spatial distribution than
the progenitor. The second type of branching may occur even if the spatially averaged
dynamics contribute stabilizing selection, such as in Example 1 below.

Third, if the diffusion rate is not under selection we can in many situations (see
Appendix B for details) estimate an upper limit to the amount of disruptive selection
(i.e., the second derivative of the invasion fitness with respect to the mutant trait) that
can be contributed by environmental heterogeneity as:

2K

1∫
A∗2dx

∫
A∗2

 ∂G
∂χ

∣∣∣∣∣
χ=χr

2

dx

d
. (13)
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Here, K is a constant that depends only on the shape and size of the landscape. The
numerator can be interpreted as the weighted variance of local selection gradients, in the
same spirit as in Eq. 11. This means that the maximal amount of disruptive selection
coming from environmental heterogeneity for any given landscape depends on the ratio
between the overall variability in local directional selection regimes and diffusion rate
d.

The results concerning directional selection are also valid in a spatial quantitative
genetics setting in the limit of low standing variation. In a non-spatial setting, it has
been noted that there are some strong similarities between adaptive dynamics and
quantitative genetics (Waxman and Gavrilets 2005). We investigate to what extent
our conclusions about directional selection derived in the setting of adaptive dynamics
hold true also in a spatial quantitative genetics setting by using a model developed by
Kirkpatrick and Barton (1997), which describes trait evolution in a population with
normally distributed trait values at each point in space. We conclude that, in the
limit of small standing genetic variation, the quantitative genetics model reduces to a
reaction-diffusion equation for the ecological dynamics, and that trait evolution becomes
completely determined by the same expression for directional selection that we derived
in the adaptive-dynamics context. The details can be found in Appendix C.

Application of the new method to evolutionary community assembly
in continuous space and in metacommunities – a general recipe and
two examples

An important application of the new method for calculating selection across heteroge-
neous space is to the study of evolutionary community assembly. Since Eq. 10 makes
it possible to efficiently calculate the direction and magnitude of selection acting on
a set of resident populations, methods such as setting the rate of change of a trait
to be proportional to the selection gradient, can be used to investigate the coevolu-
tionary dynamics of ecological communities. Many methods for studying evolutionary
community assembly and for numerically implementing the equations of the previous
section exist. Below, we describe one such combination of methods, which is applicable
to both continuous space and to landscapes of discrete habitat patches occupied by
metacommunities.

Evolutionary assembly in continuous space. For numerical implementation we dis-
cretize (continuous) space into a lattice. This reduces the partial differential equation
(6) to a large set of coupled ordinary differential equations, the density distribution
A(x) to a vector of densities A, and the differential operator F to a square matrix. The
discretized equation system is then integrated to ecological equilibrium. The invasion
fitness of a mutant in the system at a given ecological equilibrium is then found by
computing the dominant eigenvalue of the matrix F , and an expression analogous to
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Eq. 10 can be derived (see Appendix D).

The evolutionary assembly process is computed in three principal steps. First, dur-
ing evolutionary community assembly selection will be directional for most of the time,
and several methods can be used to compute the evolutionary response to directional
selection. For instance, to produce Fig. 2A in Example 1 below we set the rate of change
of a trait to be proportional to the selection gradient, i.e., dχr/dt = εD(χr), where ε
is a small number separating ecological and evolutionary time scales. ε was chosen to
be sufficiently small for the ecological dynamics to be very close to equilibrium at all
times. This type of gradient dynamics is commonly used in computing the effects of
directional selection, and has the same general form as e.g., the canonical equation of
adaptive dynamics (Dieckmann and Law 1996; Champagnat 2003) or the Lande equa-
tion (Lande 1979). For Fig. 3 in Example 1 we were only interested in finding the
eco-evolutionary equilibria, and hence we used the secant method (see e.g., Press et al.
2007) with a bound on step-size to find where the selection gradient for each resident
was zero.

Second, when directional selection ceases and an evolutionarily singular point is
reached, direct numerical computations of the dominant eigenvalue of the matrix F for
trait values close to each resident are used to determine whether each resident phenotype
is at an evolutionary branching point or an evolutionarily stable strategy (ESS). If any
of the residents is at an evolutionary branching point, a portion of its density is split off
to form a new phenotype with a trait value close to the one of the branching resident,
and further co-evolution of the new ensemble is calculated as previously. Third, once
all phenotypes are at an ESS, further trait values with positive invasion fitness may
still exist. In such cases, a mutant with a trait value at the global maximum in the
fitness landscape is allowed to invade the ensemble. As this requires large mutational
steps, it is done by direct numerical calculation of the invasion fitness, i.e., the dominant
eigenvalue of F . The described three steps of the evolutionary assembly process are
then repeated until no more positive invasion fitness is available. An example of the
entire process (Fig. 2A) and the resulting fitness landscape (Fig. 2B) is illustrated in
Example 1 below.

Evolutionary assembly in metacommunities. Our new method for the calculation
of selection across a heterogeneous, but continuous, landscape is easily adapted to the
setting of an evolving metacommunity on a set of discrete patches, where the dynamics
are governed by coupled ordinary differential equations. Since the just described nu-
merical implementation of continuous space scenarios is technically equivalent to the
metacommunity formalism, we do not treat the latter any further in the main text but
refer instead to Appendix D. There we develop in detail a formalism for the study of
community assembly in an evolving metacommunity, where both local growth rates in
different patches and dispersal rates between patches may depend on a selected trait
of the evolving phenotypes. Additionally, in Appendix C, the results concerning the
spatial quantitative genetics model of the previous section are restated for a metapop-
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ulation model on discrete patches.

In the following sections we illustrate the application of our perturbation-based
method to the study of evolution in heterogeneous space with two examples of sys-
tems where consumers compete for two limiting resources along spatial gradients and
experience an evolutionary trade-off in the efficiency with which they can use the two
resources. Example 1 is crafted as an easy to understand, heuristic case study assum-
ing a highly regular, 2-dimensional geometry of resource supply and exclusively random
(diffusive) dispersal of consumers. Example 2 is a much more realistic case study of
phytoplankton competing for nutrients and light along opposite vertical gradients and
includes the additional complication of directed movement (which requires a variable
transformation described in Appendix E). It also shows the relative ease with which an
existing ecological study can be extended to include evolutionary dynamics. In both ex-
amples we focus on the most relevant and challenging issue in a spatial context, i.e., the
influence of the speed of (diffusive or directed) movement across heterogeneous space
on evolutionary outcomes. In addition, we evaluate the computational efficiency of the
perturbation techniques. The reader interested in learning to apply the method may
also consult Appendix F, where a discrete example simple enough to solve analytically
is treated.

Example 1: Randomly dispersing consumers competing for resources with
spatially variable supply rates

In our first example randomly dispersing consumers compete for two heterogeneously
distributed resources on a square landscape (with spatial coordinates x and y). Con-
sumers take up resources at the coordinate at which they reside and move randomly
through the landscape as described by a diffusion process. The two resources are
substitutable, renew locally at each coordinate, and do not disperse. As an example
we envision plants consuming two substitutable nutrients (e.g., nitrate and ammonia)
and dispersing seeds randomly, but the scenario is applicable to other systems with
primarily locally renewed resources (e.g., randomly dispersing herbivores consuming
substitutable plants). The dynamics at each point in space of the density Ak(t, x, y) of
consumer k, and of the two resource densities R1(t, x, y) and R2(t, x, y) are described
by the equations:

∂Ak
∂t

= G(R1, R2)Ak −mAk + d∆Ak (14a)

dR1

dt = r1(K1 −R1)−
∑
k

Gmax
a1kR1

1 + a1kR1 + a2kR2
Ak (14b)

dR2

dt = r2(K2 −R2)−
∑
k

Gmax
a2kR2

1 + a1kR1 + a2kR2
Ak. (14c)
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Consumers take up resources 1 and 2 and convert them into growth according to a func-
tion derived from the concept of the ‘synthesizing unit’ (Kooijman 1998) at a maximal
rate Gmax. For the case of two substitutable resources this yields

G(R1, R2) = Gmax
a1kR1 + a2kR2

1 + a1kR1 + a2kR2
, (15)

where a1k and a2k are consumer k’s affinities for resources 1 and 2. In the limiting case
of only one resource being present this function reduces to the familiar Monod function
(Monod 1949) with 1/a1k or 1/a2k, respectively, being half-saturation constants.

In the absence of consumers, resources 1 and 2 follow semi-chemostat dynamics with
turnover rates r1 and r2 and maximum resource densities at each point in spaceK1(x, y)
and K2(x, y). Semi-chemostat dynamics are commonly used to describe the renewal of
abiotic resources such as mineral nutrients (Tilman 1982) and ensure, for the non-spatial
case of two resources, that the system settles to a locally stable ecological equilibrium.
Though not guaranteed for the spatial case, we observe only stable equilibrium dynamics
for the range of parameters explored in this example.

For ease of interpretation, we assume a highly regular geometry of the resource
supply landscape. Specifically, total resource supply is constant (K1 + K2 = 2.05 at
each point in space), while the ratio K1/K2 varies in space in the form of two crossed
saddle-shapes as in Fig. 1. We assume that all consumers have identical (and fixed)
maximum growth rates Gmax, mortality rates m, and diffusive dispersal rates d, but
that their affinities to resources 1 and 2 can evolve within the constraints described
below.

Consumers are characterized by a trait χk which describes a trade-off between affini-
ties for the two resources as

a1k = 1
1 + e−(a0+χk) , a2k = 1

1 + e−(a0−χk) , (16)

pictured in Fig. 1B. Here a0 is a trade-off control parameter that makes the trade-off
strong for a0 < 0 , linear for a0 = 0, and weak for a0 > 0. An example of a weak trade-
off is shown in Fig. 1B (a0 = 2.5), which is the one we used in the numerical examples
below (Figs. 2 and 3). The trade-off for the resource affinities is constructed in such a
way that there exists a unique value of trait χ that maximizes consumer growth for each
resource ratio when the trade-off is weak. Consumers with χ > 0 are better at acquiring
resource 1 and consumers with χ < 0 are better at acquiring resource 2. Consumers
with χ = 0 are perfect generalists. The landscape has reflective boundary conditions

∂Ak
∂x

∣∣∣∣∣
x=−1,x=1

= 0, ∂Ak
∂y

∣∣∣∣∣
y=−1,y=1

= 0, (17)

i.e., consumers cannot disperse into or out of the landscape. The parameter values used
in simulations are given in Table 1.
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Figure 1: Example 1. (A) Resource supply landscape. The ratio K1/K2 of the maximum
resource densities of the two resources is distributed as two crossed saddle-shapes in space. The
sum of the maximum resource densities of the resources is constant so that K1 +K2 = 2.05.
(B) The trade-off curve describing the relationship between consumers’ resource affinities for
the two resources. The concave down shape of the curve implies that the trade-off is weak
and imposes a cost to specialization. Evolution of the trait χ is constrained to yield resource
affinity combinations on the trade-off curve. The red dots indexed by a-e indicate the resource
affinity of consumers a-e in Fig. 2.

Table 1: Parameters and state variables in Example 1.

Quantity Definition Value/range unit
Ak Density of consumer k mass area−1

R1,2 Densities of resources 1 and 2 mass area−1

m Mortality rate 0.1 time−1

d Diffusion rate 1.75 · 10−6 area time−1

K1,2 Maximum resource densities of resources 1 and 2 See Fig. 1a mass area−1

r1,2 Renewal rates of resources 1 and 2 1 time−1

a1k,2k Resource affinity of consumer k for resources 1 and 2 (0,1) area mass−1 time−1

a0 Trade-off strength control parameter 2.5 -
Gmax Maximal consumer growth rate 1 time−1

χk Trait value for consumer k (−∞,∞) -
x Horizontal spatial coordinate (-1,1) length
y Vertical spatial coordinate (-1,1) length
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To solve the ecological and evolutionary dynamics, we discretized the landscape to
a 35 × 35 grid, and used the methods described above (Evolutionary and assembly in
continuous space). Figure 2A shows an example of an evolutionary process for the
resource landscape depicted in Fig. 1A, where we seeded the landscape with a single
phenotype and ended up with a community of 11 different consumers. Once an eco-
evolutionary equilibrium has been reached, different consumer phenotypes will have
settled onto spatial distributions reflective of their degree of specialization on either
resource (Fig. 2C), mirroring the distribution of the resource supply ratio (Fig. 1A).
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Figure 2: (A) An example of trait evolution on the resource supply rate landscape in Fig.
1, with parameters as in Table 1. Consumers continually evolve until an eco-evolutionary
equilibrium is reached at the final time point. Letters a-e indicate which branch corresponds
to which consumer density distribution in C. (B) Fitness landscape at the final point in time
of A, showing that all consumers reside on local fitness maxima, with no further invasions
possible. Red dots indicate resident consumers’ trait values. (C) Equilibrium distribution in
space of the five consumers indicated by letters a-e in panels A and B. Consumers with positive
trait values are resource 1 specialists, consumers with negative trait values are specialized on
resource 2, and consumers with trait value 0 (c) are generalists and have equal affinity for both
resources. Darker shading indicates higher consumer density. Though pictured separately for
clarity, there is significant spatial overlap among consumers, and several consumers can co-
occur at the same spatial coordinate.

While the above findings are qualitatively intuitive, our approach greatly facilitates
quantitative prediction of the exact number of evolving phenotypes, their trait values,
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population sizes and spatial distributions. Note that quantitative prediction of these
features is as easily achieved also when spatial variation in local selection is highly irreg-
ular, and thus precludes any intuition about even the qualitative nature of evolutionary
outcomes. Quantitative prediction of evolutionary outcomes is only a simple task when
the dispersal rate of consumers is either zero (allowing perfect local adaptation) or very
high (preventing local adaptation altogether, see below). In the following we therefore
explore in greater detail how these quantitative predictions depend on the consumers’
rate of diffusion.

In a system that lacks spatial structure in resource supply, only one or two consumers
can coexist when competing for two resources (sensu Tilman 1980). We observe the
same phenomenon in the presence of spatial structure in resource supply when the
diffusion rate of consumers is sufficiently high, because the rate of diffusion controls
to what extent consumers experience environmental heterogeneity. Fig. 3 shows how
the equilibrium distribution of trait values is affected by the rate of diffusion. When
diffusion rates are sufficiently high all consumers more or less see only the average
resource supply ratio, which is 1. This means that only a single generalist consumer
will exist, due to the weak trade-off between resource affinities. We made a cut-off at
a rate of diffusion yielding 11 consumers, since the computational complexity increases
quite steeply with the number of consumers. In the limit of d = 0, one would expect
to have one consumer for each ratio K1/K2, since there exists a unique χ optimizing
growth for each ratio, and with no diffusion to propagate the consumers, each extant
consumer will adapt to its local conditions.

To get a better understanding of the conditions that favor transition from a monomor-
phic to a polymorphic community we employ the methods detailed in Appendix B to
determine the switchpoint between stabilizing and disruptive selection on a monomor-
phic consumer population for different diffusion rates. Due to the spatial symmetry
of the supply ratios of resources R1 and R2 across the landscape, there is a spatially
constant solution Ac for the density of the monomorphic consumer at the evolutionarily
singular point χr = 0. We use this to analytically calculate an upper limit C for the
amount of disruptive (C > 0) or stabilizing (C < 0) selection (i.e., the second derivative
of the invasion fitness with respect to the mutant trait):

C ≤ 1∫
A2
cdx

∫
A2
c

∂2G

∂χ2

∣∣∣∣∣
χ=0

dx + 1∫
A2
cdx

∫
A2
c

 ∂G
∂χ

∣∣∣∣∣
χ=0

2

dx
L2

π2d
. (18)

The first term is a weighted average of the curvatures of local selection, which here
are downward concave (i.e., ∂2G

∂χ2

∣∣∣
χ=0

< 0) everywhere owing to the weak trade-off
in resource-utilization. Due to the spatial symmetry in resource supply ratios this
results in stabilizing selection across the entire landscape: average fitness is highest for
χr = 0 because the local fitness gains of a phenotype with χr 6= 0 is outweighed by
the inevitably higher local fitness losses in locations with the opposite resource supply
ratios. The integral ratio in the second terms describes a weighted variance of local

15



directional selection. This ratio is multiplied by a measure of the size and shape of the
landscape (here L = 2 is the length of each side of the square landscape) and is divided
by the diffusion rate, d. As the average local selection is stabilizing (i.e. the first term in
Eq. 18 is negative), evolutionary branching can only arise from a sufficiently large ratio
between the variance in local selection regimes and the diffusion rate. In this specific
system the solution for Ac and G does not depend on d, and we may thus set the above
expression to zero to calculate a diffusion rate above which we know that selection will
be stabilizing. This calculation yields d = 3.86 · 10−4, which agrees well with the value
of d at which the system transitions from monomorphic to polymorhpic (Fig. 3).
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Figure 3: Example 1. Distribution of consumer trait values at evolutionary equilibrium for
different rates of diffusion. When the rate of diffusion is high, a generalist can monopolize
the entire space, whereas low rates leave room for many co-existing consumers. The vertical
broken line indicates the upper limit for disruptive selection (d = 3.86 ·10−4), as calculated by
Eq. 18 (see text). Parameters other than d are as in Table 1. See Appendix G for an account
of the nature of the bifurcations, and why the diagram has gaps.

Example 2: Sinking algae in a water column

The previous example illustrated how phenotypic selection experienced by populations
of randomly dispersing organisms depends both on the spatial pattern of local selection
regimes and on the rate of dispersal across the landscape. In some systems additional
aspects of movement have to be taken into account to understand evolutionary responses
to spatially varying selection. For example, many organisms disperse directionally in
fluid media (e.g., streams, coastal longshore currents, wind) or by gravity. Such systems
can be modeled with reaction-advection-diffusion equations where, in addition to the
diffusion term, an advection term describing directional movement is introduced (Speirs
and Gurney 2001; Huisman et al. 2002; Anderson et al. 2005).

This directional movement presents a new type of problem. The necessary technical
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condition allowing us to compute the expression for the selection gradient (Eq. 10) is
that the differential operator describing the dynamics is what is known as “self-adjoint”
(See Appendix A for details). Intuitively speaking, this condition, in the spatial case,
means that the dispersal or transport rate from a coordinate x to a coordinate y is
equal to that from y to x. In the discrete spatial case, this condition is equivalent to
having a symmetric dispersal matrix. In the continuous case, this imposes conditions
both on the form of the operator itself, as well as on the boundary conditions of the
system. Advection breaks this symmetry, but for the case of constant advection this
issue can be resolved by means of a variable-transform (Appendix E), which is what we
have applied in the example below.

An example of a widespread ecological system described by reaction-advection-
diffusion is sinking plankton algae growing in a pelagic environment. The spatial dy-
namics of this system are considerably more complex than those of Example 1 because,
besides the added complication of directional algal movement, resources are also trans-
ported through space by either turbulent diffusion (dissolved nutrients) or directional
flux (light). Such systems are typically characterized by opposing vertical resource
gradients (with light availability decreasing and nutrient availability increasing with
depth), setting up a smooth, continuous gradient of spatially varying selection for light
vs. nutrient use capacities. As an illustration we use the so called “fixed stoichiometry”
version of a phytoplankton model by Jäger et al. (2010), where nutrients from algae
that have settled out of the water column are recycled in the bottom sediment. The
equations that describe the ecological dynamics are reproduced in Appendix E together
with the details of how the evolutionary dynamics were implemented.

The growth rate of the algae is proportional to the product R/(Mj+R)·I/(Hj+I) of
two Monod functions describing the dependence of algal growth on available nutrients
(R) and light (I). We introduce evolutionary dynamics to the system by letting the half-
saturation constants of phenotype j for nutrient and light uptake Mj and Hj depend
on a trait χj such that Mj = M0/χj and Hj = H0χj. This implies a weak trade-off
between the half-saturation constants, where phenotypes with a high value of χ are
good nutrient competitors, and phenotypes with low χ are good light competitors (Fig.
4A).

To study evolutionary consequences of directional dispersal – in this case sinking –
we considered a 50 m deep water column and let the system run to eco-evolutionary
equilibrium (in the same way as in Example 1) for a range of algal sinking speeds,
v. For the chosen parameter values, sinking speed not only affects the equilibrium
distribution of phenotype trait values but also the number of co-existing phenotypes
in a non-monotonic manner (Fig. 4B). With increasing sinking speed the phenotypes’
depth distributions become centered at increasingly greater depths (Fig. 4C, D), and
the overall biomass in the system generally decreases (Fig. 4E). For the investigated
parameter range a strong light competitor, pictured in green in Fig. 4, tends to dominate
the system.
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Figure 4: Example 2. (A) Trade-off between the half-saturation constants for light (H) and
nutrient (M) uptake. The three dots show the combination of half-saturation constants for the
three phenotypes at the sinking speed indicated by the broken line in B, C, and E. (B) Eco-
evolutionary equilibrium distribution of trait values for different sinking speeds. Phenotypes
with low trait values are good light competitors, and phenotypes with high trait values are
good nutrient competitors. (C) The depth of the center of mass of the depth distributions of
biomass for different sinking speeds. (D) Depth distribution of biomass concentration of the
three phenotypes at the sinking speed indicated by the broken line in B, C, and E. (E) The
standing stock of biomass of the algal phenotypes for different sinking speeds. The standing
stock of a phenotype is its biomass concentration integrated over the entire water column.
(F) Depth separation between the center of mass of the top and bottom phenotypes (blue and
green in A-E). The dots delimit the range of intermediate sinking speeds over which the third
(red) phenotype is part of the ensemble. In all panels, different colors represent different
phenotypes with the color codes being consistent among panels.
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It is far from obvious why intermediate sinking speeds generate the most diverse
communities. One possible explanation could be that only at intermediate rates of
sinking does the depth separation between the top and bottom phenotypes become large
enough to admit an intermediate phenotype (see Fig. 4F). We limited our investigations
to a realistic range of sinking speeds v for which we observed equilibrium dynamics, and
for which the numerical approximation of the transformation of Eq. E.9 (Appendix E)
was accurate at the implemented spatial resolution. When sinking speeds are increased
further the system first moves into limit cycle dynamics until, at around v = 4 m day−1,
sinking losses become so large that no population is viable.

Computational benefits

Numerically, the main advantage of using the perturbation expression for calculating
selection gradients, Eq. 10, is that it does not rely on any explicit computations of
eigenvalues or eigenfunctions. If the expression weren’t available, the selection gradient
would have to be estimated numerically by calculating, for example, (λd(χr+ε)−λd(χr−
ε))/(2ε), for some small number ε which would require the numerical calculation of the
dominant eigenvalue of F (χr + ε) and F (χr − ε). Numerical calculation of eigenvalues
of large matrices is however time-consuming, and hence using Eq. 10 can yield very
significant computational time-savings. This is particularly true when setting the rate
of change of a trait in time to be proportional to the selection gradient, in which
case many evaluations of the selection gradient have to be made. As an example, we
timed the calculations of the selection gradients for all residents in Fig. 3. The average
time for numerical computation of the selection gradient using Matlab’s (R2014a) ’eigs’
function was 0.102 seconds, compared to 6.03 · 10−5 for the perturbation calculation.
This makes the perturbation calculation more than 1500 times faster. Using the above
estimates of average computation times and (conservatively) assuming that the selection
gradient has to be calculated only once per resident and time step, calculation of all
selection gradients needed to produce Fig. 2A would have taken over 10 hours without
the perturbation methods, but only roughly 21 seconds with them.

Discussion

Contributions to understanding selection in space

Apart from their use as efficient tools for modeling specific evolutionary scenarios,
the expressions derived for directional and stabilizing/disruptive selection yield several
novel, general insights. For example, when the trait under selection does not affect
movement, Eq. 11 shows that the selection gradient in the spatial system can be un-
derstood as a weighted average of local selection gradients with weights proportional
to the square of the resident population’s equilibrium distribution. Eq. 11 can thus in
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principle be used to predict the direction of evolution of a trait under selection in a
heterogeneous environment. This would require accurate measurements of local pop-
ulation densities and of how per-capita growth rates change with trait values (i.e. of
∂G/∂χ). The latter is a challenging and labor intensive task in most natural systems.
An alternative would be to investigate to what extent selection gradients measured us-
ing the approach of Lande and Arnold (1983) could serve as useful proxies for ∂G/∂χ,
as there is already a wealth of such measurements (see e.g., Siepielski et al. 2013, and
the references therein).

Eq. 11 makes furthermore a contribution to the unresolved issue of widespread local
directional selection combined with evolutionary stasis (Merilä et al. 2001). Specifically,
the expression shows that even if the population-level selection gradient is zero, as in
evolutionary stasis, local measurements of the selection gradient will very likely be non-
zero and point in different directions at different points in a heterogeneous environment.
While this possibility has been conjectured previously, Eq. 11 lends mathematical sup-
port to it and could be used to ascertain to what degree space is responsible for the
directional selection/stasis dichotomy in real populations.

Finally when it comes to disruptive selection in heterogeneous landscapes, the meth-
ods described herein (see Appendix B for details) can be used to determine whether the
source of disruptive selection is a trade-off across the phenotype range in e.g., physiol-
ogy or behavior, or the environmental heterogeneity prompting local adaptations. This
was shown in Example 1, where the spatially averaged stabilizing trade-off in resource
utilization could be overcome by disruptive selection contributed by variability in se-
lection regimes provided that the rate of dispersal was sufficiently low. Depending on
which type of disruptive selection is the primary contributor, one may forecast on a
rough level the degree to which the branched phenotypes can be expected to have sim-
ilar spatial extensions as their progenitor. Furthermore, if measurements of ∂2G/∂χ2

could be obtained in addition to the local selection gradients, Eq. B.7 could be used to
rule out disruptive selection, in the same way we analyzed Example 1.

Limitations of reaction-diffusion approaches

Reaction-diffusion models are not always appropriate for describing ecological dynamics.
In particular, the discrete nature of individuals is not modeled, and the diffusion opera-
tor instantaneously propagates infinitesimally low densities across any region. This may
lead to some pathological behavior, such as the somewhat infamous atto-fox (Mollison
1991), where 10−18 of an infected fox causes a re-invasion of rabies. Reaction-diffusion
equations furthermore do not always replicate the limiting behavior of an underlying
stochastic spatial process, as pointed out by Durrett and Levin (1994), although the
authors remark that this issue can sometimes be alleviated by correcting the reaction
terms by deriving them directly from the stochastic process. The shortcomings of
reaction-diffusion equations thus practically invalidate their use for studying evolution
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in settings where mutant-mutant interactions or limited movement are critical to the
outcome. Examples include the evolution of cooperation, where spatial structure has
been shown to allow local clusters of cooperators to invade a community of defectors
(see e.g., Ferrière and Le Galliard 2001; Doebeli and Dieckmann 2003; Mágori et al.
2005; Lion and van Baalen 2008, for perspectives on these shorcomings). Before apply-
ing the framework developed in this paper, one should therefore carefully assess that
neither the ecological nor the evolutionary processes of interest are critically dependent
on the discrete nature of individuals or on limited dispersal rates of mutants.

Although there is no straightforward way of taking local mutant-mutant interactions
into account in reaction-diffusion models, as in other frameworks (see next section), a
possible way of modeling limited dispersal in reaction-diffusion systems is with non-
linear diffusion terms. Using so-called slow diffusion, the spread of infinitesimal densities
is no longer instantaneous. Such approaches have occasionally been used to model the
ecology of populations, for example of microorganisms (Eberl et al. 2001; Tao and
Winkler 2013) and insects (Turchin 1989). Using nonlinear diffusion to model spread
implies that parts of a landscape may become inaccessible to some of the phenotypes.
This in turn suggests that the location of invasion of a mutant would be critical to its
success, as opposed to the linear diffusion models where the mutant spreads globally
while still rare. An adaptive-dynamics framework for these types of non-linear diffusion
equations does, however, not yet exist, and the formulation and analysis of such a
framework would be a natural continuation of the material presented here.

Other analytical approaches to modeling spatial evolution

As the eco-evolutionary dynamics of spatially structured systems can be very com-
plicated, some realism must inevitably be sacrificed to successfully derive analytical
insights. Depending on the focus of interest, different approaches have been developed
to handle specific phenomena, while neglecting other parts of ecological, evolutionary,
or spatial dynamics for analytical feasibility.

For example, starting with Wright (1943) there has been a large body of population-
genetics theory aiming at understanding genetic structure in finite, or locally finite,
populations (see Rousset 2004, for a review). The framework considers dispersing in-
dividuals on a possibly infinite set of discrete patches, where the expected allele fre-
quencies are tracked. These models have the advantage that they enable the study of
both genetically explicit selection through a weak selection approximation, as well as
the effects of genetic drift. Incorporating demographic dynamics into these models is,
however, very complicated compared to phenotypic approaches such as adaptive dy-
namics or quantitative genetics, and most models simply consider population sizes to
be constant (but see e.g., Rousset and Ronce 2004). Models of this type may also be
used to investigate the evolution of helping behaviors (Rousset 2004; Lehmann et al.
2006), as they can take local mutant-mutant interactions into account.
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Another approach to studying phenotypic evolution in spatially structured systems
is to use adaptive-dynamics techniques coupled with moment-based approximations
(Van Baalen and Rand 1998; Lion and van Baalen 2008; Lion 2015). Typically, the
demographic dynamics of individual-based lattice models are approximated by deriving
equations for the temporal change in the density of individuals (first moment) and of
pairs (second moment) after which the moment hierarchy is ‘closed’ by replacing higher-
order moments such as the density of triplets with expressions based on the lower-
order moments. These methods have worked well for studying evolutionary processes
in space where local mutant-mutant interactions are critical, such as the evolution
of helping behaviors (Van Baalen and Rand 1998; Le Galliard et al. 2003; Ohtsuki
et al. 2006; Lion and van Baalen 2009). A corresponding approximation method for
populations in continuous space has been developed (Bolker and Pacala 1997; Law and
Dieckmann 2000) and should be applicable to evolutionary studies (a somewhat different
moment-based method has already been applied by North et al. 2011). Underlying these
techniques is the implicit assumption that space, at least in a statistical sense, looks
the same from the perspective of any focal individual. They therefore work best when
the underlying environment is homogeneous, and are thus hard to apply to cases such
as our Example 2.

Conclusions and outlook

While there will always be exceptions, we believe the following advice can be given for
modeling phenotypic evolution of spatially structured populations: If the primary goal
of the study is to understand how local individual interactions evolve or how evolution
acts near to a mean-field limit, moment-based methods are appropriate. If the goal is
to understand intraspecific variation in a trait throughout heterogeneous space, then
reaction-diffusion quantitative-genetics models are best suited. Finally, if the goal is
to study the evolution of a spatially constant trait in a heterogeneous environment,
especially for finding evolutionarily stable communities or studying disruptive selection,
then the methods detailed in this paper constitute the best alternative.

Selection in space continues to be a challenging problem, with no single theoretical
framework striking the balance between tractability and insight on the one hand, and
scope and realism on the other. We believe that this paper will provide the ground-
work for using reaction-diffusion equations coupled with adaptive dynamics to answer
questions about selection in space that were previously difficult to address.
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Online Appendix A: Derivation of invasion criteria and selection gra-
dient in spatially structured systems

In this appendix we derive expressions for the invasion fitness of a rare mutant, and the
selection gradient of a resident for spatially structured systems described by reaction-
diffusion equations. We extend the main result to all partial differential operators
that are self-adjoint, and show the type of boundary conditions yielding self-adjoint
operators for reaction-diffusion systems.

Self-adjoint operators and reaction-diffusion systems

Although the main text of this paper has been written specifically for reaction-diffusion
equations with certain boundary conditions, the perturbation theoretic formulation
of the selection gradient is valid for any self-adjoint operator. Formally, for a linear
differential operator F to be self-adjoint it has to fulfill∫

A(x)(FB(x))dx =
∫

(FA(x))B(x)dx, (A.1)

for all smooth A and B with the same boundary conditions at the boundary. Whether
the operator is self-adjoint may depend on both the operator itself and the boundary
conditions of the space on which it operates. The operator of reaction-diffusion systems
fulfill this criterion under boundary conditions of the form

a(s)A(s) + b(s) ∂A(x)
∂n̂

∣∣∣∣∣
x=s

= 0, (A.2)

where s is a point on the boundary of the domain, and ∂A(x)
∂n̂

∣∣∣
x=s

is the derivative on the
boundary in the direction n̂ pointing outwards from the boundary. a(s) and b(s) are
some arbitrary smooth functions on the boundary that are not both zero at the same
coordinate. This condition includes absorptive and reflective boundary conditions, as
well as some more complicated ones like Eq. E.11b in Example 2.

Invasion criterion

In the main text we explained how the invasion fitness in a spatial system described by
a partial differential equation could be computed by calculating the dominant eigen-
value of the differential operator describing the system dynamics. Here, we show how
application of perturbation theory can be used in conjunction with this fact to produce
expressions for the invasion fitness of rare a mutant with a trait value close to a resident.

Consider a linear differential operator F that is self-adjoint on a spatial domain
Ω. Let this operator act on functions ψ and consider the eigenvalue problem Fψ =
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λψ, where ψ is known as an eigenfunction of F if operating with F on ψ yields the
same result as multiplication with a constant λ, known as an eigenvalue. Suppose this
problem can be decomposed in such a way that

F = F0 + F ′, ψ = ψ0 + ψ′, λ = λ0 + λ′, (A.3)

where the eigenfunctions, ψ0, and eigenvalues, λ0, of the operator F0 are known, and
that F ′ is a small perturbation of F0. Then, by perturbation theory, the first order
approximation to λ, λ(1), is (see any quantum mechanics textbook e.g., Sakurai and
Tuan 1985)

λ(1) = λ0 +
∫
Ω ψ0F

′ψ0dΩ∫
Ω ψ

2
0dΩ = λ0 +

∫
Ω ψ0(F − F0)ψ0dΩ∫

Ω ψ
2
0dΩ . (A.4)

In a reaction-diffusion system, let the time-evolution of the resident phenotype den-
sity Ar(x, t) at coordinate x in a spatial domain Ω at time t be

∂Ar

∂t
= Gr(Er,x, χr)Ar + dr(χr)∆Ar, (A.5)

with Gr(Er,x, χr) being the net per-capita growth rate of the resident phenotype for
an environment Er set by the resident, and d(χr) being a coefficient determining dif-
fusion rate, for a phenotype with trait χr. For a resident at a stable equilibrium, with
equilibrium density A∗r , setting an equilibrium environment E∗r the operator

Fr : FrA
∗
r = (Gr(E∗r ,x, χr) + dr(χr)∆)A∗r (A.6)

will have a an eigenvalue λd,r = 0, with associated eigenfunction A∗r , since per definition
a population in equilibrium neither grows nor declines. Furthermore, since the equilib-
rium is stable, there cannot be any eigenvalues larger than 0, since by Eq. 8 this would
imply that a small deviation from the equilibrium would lead to the solution growing
away from it. This means that the dominant eigenvalue of Fr has to be λd,r.

A rare mutant in the environment set by the resident population will follow the
dynamics

∂Am

∂t
= Gm(E∗r , χm)Am + dm(χm)∆Am, (A.7)

where Gm is assumed not to depend on Am, with

Fm : FmAm = (Gm(Er, χm) + dm(χm)∆)Am. (A.8)

The difference of the operators is

Fm − Fr = (Gm −Gr) + (dm − dr)∆, (A.9)

which we can identify as F ′ and insert into Eq. A.4 yielding a first-order perturbation
expression for the dominant eigenvalue, which is the invasion fitness of a rare mutant,

λ
(1)
d,m = λd,r +

∫
Ω A

∗
r ((Gm −Gr) + (dm − dr)∆)A∗r dΩ∫

Ω A
∗2
r dΩ . (A.10)
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Assume further restrictions of the boundary conditions, so that if Γ is the boundary of
Ω, then

∫
Γ A
∗
r
∂A∗

r
∂n̂

dΓ = 0, with ∂/∂n̂ being the derivative in the outwards direction n̂
from the boundary. Under this assumption integration by parts can be used together
with the fact that λd,r = 0 to rewrite the above equation as

λ
(1)
d,m =

∫
Ω A

∗2
r (Gm −Gr)dΩ− (dm − dr)

∫
Ω |∇A∗r |2dΩ∫

Ω A
∗2
r dΩ . (A.11)

Since the normalization factor 1/
∫

Ω A
∗2
r dΩ is always positive, this can be simplified if

only the sign of the invasion fitness is to be calculated:

λd,m > 0 ⇔
∫

Ω
A∗2r (Gm −Gr)− |∇A∗r |2(dm − dr)dΩ > 0. (A.12)

It should be noted that Eqs. A.11 and A.12 due to the first-order nature of the
approximation are only valid away from evolutionary singular points, i.e., when the
selection gradient is not zero. We treat the case at evolutionary singular points in
Appendix B.

Selection gradient

The selection gradient D(χr) is the quantity describing how the invasion fitness of a rare
mutant changes with changes in trait around the resident trait, thus telling the strength
and direction of directional selection for that resident. Since in a spatial system as in
the previous section the invasion fitness is given by the dominant eigenvalue λd of a
differential operator, to calculate the selection gradient we would want to compute

D(χr) = ∂λd

∂χm

∣∣∣∣∣
χm=χr

. (A.13)

In general, this may not be possible, but for systems where Eq. A.11 is valid we can
obtain the selection gradient by differentiating with respect to the mutant trait, and
evaluating it at the resident trait:

∂λd,m

∂χm

∣∣∣∣∣
χm=χr

= ∂

∂χm

[∫
ΩA

∗2
r (Gm −Gr)dΩ− (dm − dr)

∫
Ω |∇A∗r |2dΩ∫

ΩA
∗2
r dΩ

]
χm=χr

. (A.14)

Since only Gm and dm depend on χm this simplifies to:

D(χr) = ∂λd,m

∂χm

∣∣∣∣∣
χm=χr

=

∫
ΩA

∗2
r

∂Gm
∂χm

∣∣∣
χr

dΩ− ∂dm
∂χm

∣∣∣
χr

∫
Ω |∇A∗r |2dΩ∫

Ω A
∗2
r dΩ , (A.15)

which recovers the expression in Eq. 10.
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This result can be generalized to all self-adjoint operators. Define the derivative of
a differential operator F with respect to a parameter χ, ∂F/∂χ to be the differential
operator whose terms have been differentiated with respect to that parameter, so that
for instance the derivative of the reaction-diffusion operator FRD = G(x, χ) + d(χ)∆
with respect to χ is:

∂FRD

∂χ
= ∂G(x, χ)

∂χ
+ ∂d(χ)

∂χ
∆. (A.16)

Then, the selection gradient of the resident phenotype, whose equilibrium dynamics are
given by

0 = ∂A∗r
∂t

= F (E∗r , χr)A∗r , (A.17)

where F is self-adjoint, can be calculated as:

D(χr) = ∂λd

∂χ

∣∣∣∣∣
χ=χr

=

∫
Ω A

∗
r
∂F
∂χ

∣∣∣
χr
A∗r dΩ∫

Ω A
∗2
r dΩ . (A.18)

Equation A.18 is in general, and particularly in quantum mechanics, referred to as
the (first) Hellmann-Feynman theorem, after physicists Richard Feynman, and David
Hellmann who among others proved the theorem (Hellmann 1933; Feynman 1939).

The above result also implies the following: If the growth and dispersal of the density
of a morph can be described with a self-adjoint operator and dispersal is not under
selection, then Eq. 11 can be used to calculate the selection gradient. An example would
be integro-differential equations where nonlocal dispersal is described by a symmetric
dispersal kernel.

Reproductive value

The reproductive value in a class-structured system of an individual in a given class is
defined as the relative long-term contribution to a population by that individual (see
e.g., Caswell 2001). In the case of continuous space, we may think of the class of an
individual as being described by its spatial coordinate x, and we may describe the
distribution of individuals with unit density at a given location x0 as being δ(x − x0),
where δ is the Dirac delta distribution. We would like to show that the relative long-
term reproductive contribution of such a distribution of individuals is proportional to
A∗(x0), the resident equilibrium distribution, so that the reproductive value is the same
as that distribution.

Consider the equation:
∂A(t,x)
∂t

= G(A,x)A+ d∆A, (A.19)

where we look at the linearized equation around the equilibrium solution A∗(x), so
that G∗(x) = G(A∗,x). We assume that the linear operator described by the linearized
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equation is self-adjoint on a finite-sized landscape, and sufficiently well behaved (this
will very nearly always be the case for ecological applications, but see Cantrell and Cos-
ner 2004 for a full account). Given this, the operator has a complete set of orthogonal
eigenfunctions uk(x) so that the solution to the equation

∂A(t,x)
∂t

= G∗(x)A+ d∆A (A.20)

is given by A(t,x) = ∑∞
k=0 cke

λktuk(x) and since uk are orthogonal the constants ck
are given by ck = 〈A(0,x), uk(x)〉, where 〈·, ·〉 denotes the inner product given by
〈u(x), v(x)〉 =

∫
u(x)v(x)dx. If A∗ is the stable equilibrium solution to the above

equation then the dominant eigenvalue λd = 0, and has an associated eigenfunction
ud(x) = A∗(x)/‖A∗‖, where ‖X(x)‖ :=

√
〈X,X〉, and for long times we have:

lim
t→∞

A(t,x) = 〈A(0,x), ud(x)〉ud(x). (A.21)

Since we are interested in the long-term contribution of an individual at coordinate x0
we let A(0,x) = δ(x− x0), and hence get

lim
t→∞

A(t,x) = 〈A(0,x), ud(x)〉ud(x) = A∗(x0)
‖A∗‖

A∗(x)
‖A∗‖

. (A.22)

Thus, for all x the relative long-term contribution of an individual at location x0 is
given by A∗(x0) in the sense that if we consider individuals at locations x(1)

0 and x(2)
0 ,

then
limt→∞(A(t,x) |A(0,x) = δ(x− x(1)

0 ))
limt→∞(A(t,x) |A(0,x) = δ(x− x(2)

0 ))
= A∗(x(1)

0 )
A∗(x(2)

0 )
. (A.23)

Hence, A∗(x0) is the reproductive value of an individual at location x0.

Online Appendix B: Sympatric and parapatric evolutionary branch-
ings

In the preceding appendix we derived an expression for the selection gradient, measuring
the strength and direction of directional selection on a trait (Eq. A.18). When direc-
tional selection ceases and the system is at an evolutionarily singular point, however,
additional information is required to determine whether the system is at an evolution-
ary branching point, or in an evolutionarily stable strategy. For a non-spatial system,
using the notation of Eqs. 3 and 4, the second derivative of the invasion fitness

∂2G(E∗r , χ)
∂χ2

∣∣∣∣∣
χ=χr

(B.1)

at an evolutionarily singular point will determine selection to be disruptive if the second
derivative is positive, and stabilizing if it is negative (see e.g., Geritz et al. 1998).
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Similarly, the second derivative of the invasion fitness of a spatial system whose
dynamics are given by a partial differential equation with a self-adjoint operator can
also be calculated. Let there be a system

∂A(t,x)
∂t

= F (χ)A, (B.2)

where A is a phenotype density distribution, x is a spatial coordinate, t is the time, F a
linear differential operator, and χ is the phenotype trait. Let λn be an eigenvalue of F ,
and An be the eigenfunction associated with λn. Furthermore, let λd be the principal
eigenvalue of F , and let Ad = A∗r be the eigenfunction associated with λd, which is the
equilibrium distribution of the resident. Furthermore introduce notation:

∂χX = ∂X

∂χ

∣∣∣∣∣
χ=χr

, ∂2
χX = ∂2X

∂χ2

∣∣∣∣∣
χ=χr

. (B.3)

In Appendix A we calculated the selection gradient to be:

∂χλd =
∫

Ω Ad(∂χF )AddΩ∫
Ω A

2
ddΩ . (B.4)

Applying the derivative with respect to the trait again, and using the Hellmann-
Feynman theorems (Hellmann 1933; Feynman 1939), as well as the fact that the se-
lection gradient is zero at an evolutionarily singular point yields an expression for the
curvature of the fitness landscape around a resident trait in ecological equilibrium at
an evolutionarily singular point:

∂2
χλd =

∫
Ω Ad(∂2

χF )AddΩ∫
Ω A

2
ddΩ + 2

∑
n6=d

|
∫

Ω An(∂χF )AddΩ|2∫
Ω A

2
ddΩ

∫
ΩA

2
ndΩ(λd − λn) . (B.5)

This expression for the curvature, as opposed to the selection gradient (Eq. A.18), de-
pends not only on the dominant eigenvalue and eigenfunction, but also has contributions
from all other eigenfunctions of F . The first term integrates the curvature of F over
space weighted by resident equilibrium distribution, and the second term integrates the
gradient of F , weighted by both the resident equilibrium density as well as other po-
tential spatial distributions for the mutant. This allows us to interpret the two terms of
the expression as contributions from the non-spatial and spatial dynamics respectively.
The first term represents the ecological selection pressure on the phenotype, which can
be either stabilizing or disruptive. The second term, representing the spatial dynamics
is always positive, since the dominant eigenvalue λd is larger than all other eigenvalues
per definition. This can interpreted as that spatial heterogeneity always contributes to
diversification, all other things being equal.

If the first term is negative this means that there is no trait value around the
resident’s trait value which increases invasion fitness of a mutant having the same
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specific spatial distribution as the resident, Ad. The curvature may still be positive
if the magnitude of the second term is large enough, signifying that there exist other
spatial distributions (eigenfunctions) An which for a small change in trait value would
gain positive invasion fitness, putting the resident at a local fitness minimum. If on the
other hand the first term is positive, this implies that there exist trait values close to
the resident’s trait value which would increase invasion fitness of a mutant having the
same spatial distribution as the resident.

What this means is that we can classify evolutionary branching points into spatial
and non-spatial branchings. We can call these cases sympatric and parapatric diversi-
fication, if we are careful to understand what really characterize them is the source of
disruptive selection, or more precisely, the sign of the first term of Eq. B.5. The reason
the names seem appropriate is that the first case corresponds to when a phenotype with
a specific spatial distribution can branch into two phenotypes with the same spatial dis-
tributions, and the second case corresponds to a branching event where at least one of
the new phenotypes must have a different spatial distribution from its progenitor.

If we consider the case when diffusivity is not under selection, then Eq. B.5 becomes:

∂2
χλd =

∫
Ω A

2
d(∂2

χG)dΩ∫
Ω A

2
ddΩ + 2

∑
n6=d

|
∫

Ω An(∂χG)AddΩ|2∫
Ω A

2
ddΩ

∫
ΩA

2
ndΩ(λd − λn) . (B.6)

The first term now describes the weighted mean of stabilizing/disruptive selection over
all of space. The second term is still difficult to parse, but we can restrict ourselves to
sufficiently high diffusivity, in the sense that diffusivity is high enough that the phe-
notype is close to or above the bifurcation in d from monomorphic to polymorphic,
and certain domains. This allows us to make an estimate of the maximal amount of
disruptive selection that offers some insight into the transition from a monomorphic
community into a polymorphic one. If diffusivity is sufficiently high, we can approxi-
mate the eigenvalues of F by the eigenvalues of d∆. We consider only such bounded
domains that the eigenvalues of ∆, λ̂n are in a non-increasing sequence with only the
largest eigenvalue being zero, and λ̂n → −∞ as n→∞. This will be so for many eco-
logical applications, and is certainly true for the examples considered in this paper (see
Cantrell and Cosner 2004, for a thorough discussion on what domains and boundary
conditions are permissible). This means that the eigenvalues of d∆ are given by dλ̂n.
Inserting this into the expression above and using Parseval’s identity yields an upper
bound for disruptive selection:

∂2
χλd ≤

∫
Ω A

2
d(∂2

χG)dΩ∫
Ω A

2
ddΩ + 2

∫
A2

d(∂χG)2dΩ∫
A2

ddΩ
K

d
. (B.7)

Here, K is a constant that depends only on the shape and size of the domain that is
such that Kλ̂n ≤ −1 for all n > 0. Since at an evolutionarily singular point it must
be true that

∫
Ω A

2
d∂χGdΩ = 0, this means the expression

∫
Ω A

2
d(∂χG)2dΩ/

∫
Ω A

2
ddΩ

can be interpreted as the weighted variance of local selection gradients in the region.

29



This means, that under sufficiently high diffusivity, the maximal amount of disruptive
selection that spatial heterogeneity can contribute is proportional to the ratio between
the weighted variance of local selection gradients and diffusivity.

To take an example consider the 4 cases of the model in Example 1, with a0 = 2.5
or a0 = −2.5, and d = 1 or d = 10−4, representing cases with a weak and strong
trade-off, and high and low diffusivity, respectively. Putting a single phenotype at the
evolutionarily singular point χr = 0, we can look at the two terms for the selection
curvature:

a0

d 1 10−4

2.5 ∂2
χλd = −5.80 · 10−3 + 2.19 · 10−6 ∂2

χλd = −5.80 · 10−3 + 2.19 · 10−2

-2.5 ∂2
χλd = 6.87 · 10−2 + 3.25 · 10−4 ∂2

χλd = 6.87 · 10−2 + 3.25 · 100

We can see that the first terms are negative for a0 = 2.5, similar to what non-spatial
adaptive dynamics would predict for cases where a weak trade-off between two resources
favors generalists (see de Mazancourt and Dieckmann (2004), for a treatment of trade-
offs and evolutionarily singular points). For d = 1, which approaches the well-mixed
case, the contribution from the spatial term is small, since the fitness contribution from
different spatial distributions is weak. In contrast, sufficiently low rates of diffusion
(d = 10−4) allow the contribution of the second term to become large enough to render
the net curvature positive, since at least one spatial distribution that differs from the
resident phenotype’s spatial distribution might yield positive invasion fitness for trait
values close to the resident phenotype’s trait value. For the strong trade-off (a0 = −2.5,
favoring two specialists) there is a sympatric branching for both the well-mixed and
non-well-mixed case, again similar to what non-spatial adaptive-dynamics theory would
predict.

Example 1 is also very well suited to analysis by Eq.B.7, as the system with one
resident at the evolutionarily singular point, χr = 0 admits a solution that is constant
in space. This means the solution can be computed analytically, as well as that the
eigenvalues are exactly those of d∆. The eigenvalues of ∆ are given by λd = λ00 = 0
and λ̂nm = −π2(n2 +m2)/L2, where L = 2 is the length of the side of the domain, which
means that we can take K = L2/π2. However, due to the symmetry of the problem
when n = 0 or m = 0 there will be no contribution from the integral over ∂xG and the
eigenfunctions of d∆, and so we can get a better bound by only considering n,m ≥ 1
in the sum, and so we can choose K = L2/(2π2). Taken together this implies that:

∂2
χλd ≤

∫
Ω ∂

2
χGdΩ
L2 + 2

∫
Ω(∂χG)2dΩ

L2
L2

2π2d
. (B.8)

Here, G does not depend on d, and so we can calculate the smallest possible d for which
we know that selection is stabilizing by setting the above expression to 0. Computing
this yields d = 3.86 · 10−4, when we compute the variance of selection based on our
numerical discretization, which agrees very well with what we can observe in Fig. 3.
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When we compute the variance of selection gradients based on the analytical solutions
for the continuous system we get d = 3.44 · 10−4. The small discrepancy is due to the
increased variance arising from the slight patchiness of the discretization.

While useful for theoretical considerations, Eq. B.5 may in practice be less useful
than direct numerical computation of the dominant eigenvalue of F for traits close to
the resident to determine whether the resident is at an evolutionary branching point
or ESS, since only the dominant eigenvalue has to be calculated, as opposed to all
eigenvalues and eigenfunctions of Fr.

Online Appendix C: Population level selection in a spatial quantita-
tive genetics model

We investigate to what extent our conclusions about directional selection derived in the
setting of adaptive dynamics hold true also in a spatial quantitative genetics setting
by using a model developed by Kirkpatrick and Barton (1997). The model describes
trait evolution in a population with normally distributed trait values at each point in
space. In contrast to the adaptive-dynamics framework introduced above, selection is
frequency-independent as individual growth rates are allowed to depend only on local
density, spatial location, and trait value. At the same time, the model is more permissive
in that the average trait value can vary throughout the spatial domain, allowing local
adaptation. Specifically, the spatial quantitative genetics model is described by the
following equations:

∂A(t,x)
∂t

=
G(A,x, z) + 1

2V
∂2G

∂χ2

∣∣∣∣∣
χ=z

+ d∆
A =: FA (C.1a)

∂z(t,x)
∂t

= V
∂G

∂χ

∣∣∣∣∣
χ=z

+ d (2∇ lnA · ∇z + ∆z) (C.1b)

∇A · n̂ = 0, ∇z · n̂ = 0 on the boundary (Γ). (C.1c)

In the limit of small standing variation of the trait distribution, i.e., for small values
of V , this system becomes similar to the adaptive-dynamics case in several respects.
First, low standing variation implies that the population is close to monomorphic at
each point in space. Second, since the amount of standing variation sets the overall pace
of the system’s evolutionary dynamics, a population with low standing variation will be
close to ecological equilibrium over evolutionary timescales. Third, at small standing
variation, the diffusion term dominates the trait equation (Eq. C.1b), causing the local
trait means z to be close to identical everywhere in space. This creates a situation where
diffusion is dominant on ecological time-scales, homogenizing the trait distribution in
space, which means that only the selection gradient will be acting on evolutionary
time-scales. Below, we show that these similarities result in congruous equations for
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the adaptive-dynamics and quantitative-genetics frameworks. Specifically, when the
standing variation tends to zero, i.e. V → 0+, Eqs. C.1 reduce to:

∂A(t,x)
∂t

= (G(A,x, zc) + d∆)A (C.2a)

dzc(t)
dt = V

1∫
A2dx

∫
A2 ∂G

∂χ

∣∣∣∣∣
χ=zc

dx (C.2b)

∇A · n̂ = 0 on the boundary (Γ). (C.2c)

Here n̂ is a unit vector pointing outwards from the boundary, and the rest of the notation
is as in the main text. We assume equilibrium dynamics, both in the ecological sense
that there exists an ecological equilibrium distribution A∗(x) for each (reasonable) dis-
tribution z(x) or zc, and in the sense that the system will approach an eco-evolutionary
equilibrium, i.e., ∂A/∂t → 0 and ∂z/∂t → 0 as t → ∞. We shall also assume that
this eco-evolutionary equilibrium is a unique attractor for all initial conditions under
consideration. Furthermore we assume that for all x, t, and V the density distribution
of individuals A is strictly positive so that there exists a number 0 < Amin ≤ A. Lastly,
in order for it to be meaningful to talk about the full model approaching the reduced
model we assume that the solutions to Eqs. C.1 are at least continuous in V .

When the system described by Eqs. C.1 is in equilibrium with V > 0 we can see
from Eq. C.1b that

0 = V
∂G

∂χ

∣∣∣∣∣
χ=z

+ d (2∇ lnA · ∇z + ∆z) ⇒ (C.3)

A2V
∂G

∂χ

∣∣∣∣∣
χ=z

= −A2d
( 2
A
∇A · ∇z + ∆z

)
⇒ (C.4)

V
∫
A2 ∂G

∂χ

∣∣∣∣∣
χ=z

dx = −d
∫
∇ ·

(
A2∇z

)
dx ⇔ (C.5)

V
∫
A2 ∂G

∂χ

∣∣∣∣∣
χ=z

dx = −d
∫
A2∇z · n̂dΓ = 0. (C.6)

The last line uses the divergence theorem and the boundary conditions for z. From this
we see that

∫
A2 ∂G

∂χ

∣∣∣
χ=z

dx = 0 for all V > 0 and hence also in the limit V → 0+. On
the other hand, when V = 0 Eq. C.1b becomes

2∇ lnA · ∇z + ∆z = 0, (C.7)

which for the given boundary conditions by the maximum principle and Hopf’s lemma
(see e.g., Evans 2010) has only a spatially constant solution zc. Hence in the limit
V → 0+ the equilibrium solution to Eqs. C.1 and Eqs. C.2 both need to satisfy

G(A,x, z) + d∆A = 0 (C.8a)
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∫
A2 ∂G

∂χ

∣∣∣∣∣
χ=z

dx = 0 (C.8b)

z = zc, (C.8c)

in order to be a solution, and hence if (A, zc) is a solution of Eqs. C.2 it will also be a
solution of Eqs. C.1.

By the above arguments, and the assumption of unique eco-evolutionary equilibria,
we know that the solutions of both systems will certainly converge to the same eco-
evolutionary equlibrium distribution as t → ∞. For the time-dependent system we
shall argue that in the limit of small V the rate of change in time of a weighted spatial
average z becomes close to zc, and that z will be close to constant in the sense that the
weighted spatial variance of z becomes small.

To make notation more compact and readable we introduced a spatial average
weighted by the population densities of quantities denoted by 〈·〉 given by:

〈Y 〉 = 1∫
A2dx

∫
AY Adx, (C.9)

so that e.g.,

〈z〉 = 1∫
A2dx

∫
A2zdx, 〈F 〉 = 1∫

A2dx

∫
AFAdx, (C.10)

where F is the differential operator in Eq. C.1a.

We calculate the time-derivative of this average of the mean trait distribution:

d〈z〉
dt = V

〈
∂G

∂χ

∣∣∣∣∣
χ=z

〉
+ 2(〈zF 〉 − 〈z〉〈F 〉). (C.11)

The first term is the one in Eq. C.2b, so in order to show that we approach the reduced
model for small V , it is sufficient to show that the second term in the expression above
goes to zero faster than linearly in V , and that the distribution of z in space becomes
increasingly flat. We can rewrite the second term as

〈zF 〉 − 〈z〉〈F 〉 = 1∫
A2dx

∫
(z − 〈z〉)A(F − 〈F 〉)Adx, (C.12)

to which we can apply the Cauchy-Swartz theorem to show that

|〈zF 〉 − 〈z〉〈F 〉|2 ≤
(

1∫
A2dx

∫
(FA)2dx− 〈F 〉2

)(
〈z2〉 − 〈z〉2

)
. (C.13)

We wish to show that both these factors depended on at least V 2, so that |〈zF 〉−〈z〉〈F 〉|
will as well. To compare the full model to the reduced model we let the initial conditions
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for the full model z0 := z(0, x), and A0 := A(0, x) be such that z0 is constant in space,
and A0 is in ecological equilibrium, so that FA0 = 0. This implies that:

∂A

∂t

∣∣∣∣∣
t=0

= 0 (C.14)

∂z

∂t

∣∣∣∣∣
t=0

= V
∂G

∂χ

∣∣∣∣∣
χ=z0

. (C.15)

The idea is that from this initial state the pace of the ecological dynamics FA and
the weighted variance 〈z2〉 − 〈z〉2 are bounded by V and V 2 respectively. To see why
this is so we will argue, somewhat formally, by expanding the solutions in power-series.
Taking higher order derivatives in time at t = 0, by recursive application of Eqs. C.1,
these will all have a factor V , and so Taylor-expanding FA and z in time we define

FA(t, x) =: V α(t, x) z(t, x) =: z0 + V β(t, x), (C.16)

where α and β depend only on non-negative powers in V . We insert this into Eq. C.13
to get:

|〈zF 〉 − 〈z〉〈F 〉| ≤ V 2

√√√√( 1∫
A2dx

∫
α2dx−

[ 1∫
A2dx

∫
Aαdx

]2
)

(〈β2〉 − 〈β〉2) =: V 2γ(t)

(C.17)
where z0 cancels in the second factor since it is constant in space. That FA will not grow
uncontrollably in time follows from the assumption that the solution will approach an
eco-evolutionary equilibrium over time, and so FA→ 0 as t→∞. To see why also the
weighted variance will be controlled in time we can estimate the quantity 〈z2〉− 〈z〉2 at
the eco-evolutionary equilibrium. Let (Aeq, zeq) be the equilibrium solution to Eqs. C.1
and estimate

〈z2
eq〉 − 〈zeq〉2 = 1

‖Aeq‖2‖(zeq − 〈zeq〉)Aeq‖2
(i)
≤ C1

1
‖Aeq‖2‖Aeq∇zeq‖2

≤ C2
1

‖Aeq‖2A2
min
‖A2

eq∇zeq‖2
(ii)
≤ C2

1
‖Aeq‖2A2

min

V 2

d2 ‖A
2
eq
∂G

∂χ

∣∣∣∣∣
χ=z
‖2.

(C.18)

Here, the norms are taken in L2, inequality (i) is due to the weighted Poincaré inequality
(see e.g., Pechstein and Scheichl 2011), and inequality (ii) is due to the bound for A2∇z
in the divergence equation ∇ · (A2∇z) = V

d
A2 ∂G

∂χ

∣∣∣
χ=z

as given in ?. Hence 〈z2〉 − 〈z〉2

is bounded by V 2 as t→∞, and will not grow uncontrollably in time.

Taken together this implies that as V gets small

d〈z〉
dt ≈ V

〈
∂G

∂χ

∣∣∣∣∣
χ=z

〉
, (C.19)
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since the second term goes as V 2. More precisely we can rescale time as τ = V t and
see that ∣∣∣∣∣∣d〈z〉dτ −

〈
∂G

∂χ

∣∣∣∣∣
χ=z

〉∣∣∣∣∣∣ ≤ V γ ⇒

lim
V→0+

d〈z〉
dτ =

〈
∂G

∂χ

∣∣∣∣∣
χ=z

〉
.

(C.20)

Furthermore, since 〈z2〉 − 〈z〉2 is a measure of the variance of z, and goes to zero as
V 2, z will be close to constant, and hence close to zc as V gets small. Since the rate of
change 〈z〉 will approach that of zc, and the deviation from this mean will be small at
all times, Eqs. C.1 will approach Eqs. C.2 as V becomes small.

It is worth pointing out that taking the square of the population density in the
weighted average of local selection gradients is necessary, and that weighting directly
with the densities will not produce the correct results, even in the limit of small varia-
tion. Mathematically, the reason why 1∫

Adx

∫
A ∂G

∂χ

∣∣∣
χ=zc

dx cannot predict the evolution
of a spatially constant trait is that to calculate the time derivative of 〈z〉 we use that

d
1∫
A2dx

∫
A2
[ 2
A
∇A · ∇z + ∆z

]
dx = d

1∫
A2dx

∫
∇ ·

(
A2∇z

)
dx = (C.21)

= d
1∫
A2dx

∫
Γ
A2∇z · n̂dΓ = 0, (C.22)

where the last integral over Γ is over the boundary of the domain, which due to the
boundary conditions for z is zero. This term however can only be integrated out due to
the multiplication by A2 in the integral. Only multiplying with a factor A, will leave a
term that will make contributions on the order V to evolution of the spatially averaged
trait, which is of the same order as the term 1∫

Adx

∫
A ∂G

∂χ

∣∣∣
χ=zc

dx.

Lastly we will examine to what extent the quantity
〈
∂G
∂χ

∣∣∣
χ=z

〉
holds similar interpre-

tations to that of the population-level selection gradient in AD. In AD, the population
level selection gradient measures the change in population invasion fitness with a small
change in trait homogeneously across space. This case is similar for the QG model,
given a specific definition of population-level fitness. One way to motivate this defini-
tion is to look at the per capita net growth rate of the entire population. To do this,
a measure of the size of the total population is needed. The most obvious candidate
would be

∫
Adx, but this turns out to be inconsistent with results above. Instead,

they suggest that the better measure of total population size from a fitness perspective,
denoted ‖A‖, would be ‖A‖ =

√∫
A2dx. Using this definition we can calculate the per

capita net growth rate:

1
‖A‖

d‖A‖
dt = 1∫

A2dx

∫
A
∂A

∂t
dx = 〈F 〉, (C.23)
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which becomes the measure of population level fitness for the population.

To properly determine how this population level fitness changes with a small con-
stant shift in mean trait z, we considered the equation from which the QG approxima-
tion is derived, namely:

∂A(t,x, χ)
∂t

= G(A,x, χ)A+ d∆A =: FA, (C.24)

which describes the growth and random movement of the density of individuals A at
location x at time t with trait χ. The QG approximation is made by assuming a solution
of the form

A(t,x, χ) = A(t,x)η(χ, z(t,x)), η(χ, z(t,x)) = 1√
2πV

exp
[
−(χ− z(t,x))2

2V

]
.

(C.25)

G(A,x, χ) is then Taylor expanded to order 2 around G(A,x, z), and Eq. C.24 is inte-
grated over all χ, which yields Eqs. C.1. Note that for this derivation to be valid the
per capita net growth function G in Eq. C.24 may only depend on the total density of
individuals A =

∫
Adχ at each point in space.

We can then use this formulation to calculate how the population level fitness
changes with a small constant shift zs across space by computing

∂〈F 〉
∂〈z〉

:= ∂

∂zs

[
1∫
A2dx

∫
A
∫
F(Aη(χ, z + zs))dχdx

]
zs=0

, (C.26)

which after expanding the inner integral, and once again Taylor expanding G indeed
yielded

∂〈F 〉
∂〈z〉

=
〈
∂G

∂χ

∣∣∣∣∣
χ=z

〉
= 1∫

A2dx

∫
A2 ∂G

∂χ

∣∣∣∣∣
χ=z

dx. (C.27)

This calculation does not depend on V being small, and so suggests a general definition
for the population level selection gradient for this spatial QG model. It can, however,
only fully predict the evolution of 〈z〉 in the small V limit.

Much like in the AD case, these conclusions are equally valid for certain types of
metapopulation models. For such metapopulations the dynamics for the population
density Ai, and mean trait zi on patch i = 1, 2, ..., I are given by:

dAi
dt = Gi(Ai, zi)Ai + 1

2V
∂2Gi

∂χ2

∣∣∣∣∣
χ=zi

Ai +
I∑
j=1

dijAj (C.28a)

dzi
dt = V

∂Gi

∂χ

∣∣∣∣∣
χ=zi

+ 1
Ai

I∑
j=1

dij(zj − zi)Aj. (C.28b)
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Here Gi is the per capita net growth rate on patch i, and dij are the elements of
a symmetric dispersal matrix denoting the dispersal rate from patch j to i, and the
diagonal elements dii the dispersal out from patch i. If for this discrete case we define

〈Y 〉 := 1∑I
i=1A

2
i

I∑
i=1

I∑
j=1

AiYijAj, 〈y〉 := 1∑I
i=1A

2
i

I∑
i=1

A2
i yi (C.29)

for matrices and vectors respectively, then all the results derived for the continuous
space model above hold for this metapopulation model as well. Hence, for small V the
reduced model is

dAi
dt = Gi(Ai, zi)Ai +

I∑
j=1

dijAj (C.30a)

dzc
dt = V

1∑I
i=1A

2
i

I∑
i=1

A2
i

∂Gi

∂χ

∣∣∣∣∣
χ=zc

, (C.30b)

and the expression
〈
∂G
∂χ

∣∣∣
χ=zc

〉
can be interpreted as the population level selection gra-

dient measuring the change in population level fitness with a small change in trait.

Numerical example

To illustrate the behavior of the spatial quantitative genetics model as V gets small we
use a simple 1-dimensional version of the model on the unit interval x ∈ [0, 1], where
each location has an optimal mean trait. The model is described by:

∂A(t, x)
∂t

= G(A, x, z)A+ 1
2V

∂2G

∂χ2

∣∣∣∣∣
χ=z

A+ d
∂2A

∂x2 (C.31a)

∂z(t, x)
∂t

= V
∂G

∂χ

∣∣∣∣∣
χ=z

+ d

(
2∂ lnA
∂x

∂z

∂x
+ ∂2z

∂x2

)
(C.31b)

∂A

∂x

∣∣∣∣∣
x=0,x=1

= 0 ∂z

∂x

∣∣∣∣∣
x=0,x=1

= 0 (C.31c)

G(A, x, χ) = 1− (χ− x2)2 − A, d = 10−5. (C.31d)

We compare the outcomes to that of the reduced model:

∂Ac(t, x)
∂t

= G(Ac, x, zc)Ac + d
∂2Ac
∂x2 (C.32a)

dzc(t)
dt = V

〈
∂G

∂χ

∣∣∣∣∣
χ=z

〉
(C.32b)
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∂Ac
∂x

∣∣∣∣∣
x=0,x=1

= 0. (C.32c)

The models are discretized by the metapopulation models Eqs. C.28 and Eqs. C.30
respectively. We integrate the models to eco-evolutionary equilibrium for V = 10−5

and V = 10−7, after rescaling time as τ = V t in order for the outcomes to reach
equilibrium in roughly the same scaled time. We initialize the model with z = zc = 0.9
and A and Ac such that they are in ecological equilibrium at t = 0. The outcomes can
be observed in Fig. C.1. As seen there, for V = 10−7 the outcomes of the reduced and
full model are nearly identical. Realizations for a series of different values of V indicate
that the maximal error in space between A and Ac, and z and zc is proportional to V
for small enough V .
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Figure C.1: Outcomes of the example quantitative genetics model. (A) Eco-evolutionary
equilibrium densities in space for A and z for the full and reduced model. Note that the
quantities for the reduced model depicted as broken lines are nearly directly on top of those
for the full model with V = 10−7. (B) Time evolution of the spatially averaged trait 〈z〉 for
the full and reduced model.
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Online Appendix D: Application to metacommunity models and nu-
merical implementation in discretized space

The results derived in Appendix A and B are easily adapted to settings in which space is
discrete, such as an evolving metacommunity on N patches. Discretization of space into
a lattice is also a necessary step in the numerical implementation of any continuous space
model. Below, we develop the discrete-space formalism in terms of a metacommunity
model, but the same formalism is directly applicable to the discretization of a continuous
space model into a lattice.

Let Ai,n describe the density of phenotypes i ∈ {1, 2, ..., I} on patch n ∈ {1, 2, ..., N}.
Furthermore, let gi,n be the net growth rate of phenotype i on patch n, and let di,nm
be the density flow of phenotype i from patch m to patch n, and di,nn be the outflow
from patch n. Then the population dynamics of the system can be described by a set
of coupled ordinary differential equations, so that

dAi,n
dt = gi,nAi,n +

N∑
m=1

di,nmAi,m. (D.1)

If we reformulate this so that each phenotype is described by a column vector of densities
on each patch Ai, then we can let Gi be the N ×N matrix that has gi,n as its diagonal
elements, and Di be a N × N matrix that has di,nm as its elements, and get a set of
vector-valued differential equations:

dAi

dt = GiAi +DAi. (D.2)

Under the conditions that allDi are symmetric so that di,nm = di,mn, we can reformulate
the main results of this paper for metacommunities. Let A∗i be the equilibrium density
distribution for phenotype i, and χi the trait of that phenotype. Using the same
methods as in Appendix A and B, but with symmetric matrices instead of self-adjoint
differential operators the selection gradient will be:

∂λi
∂χ

∣∣∣∣∣
χ=χi

=
A∗T

i

(
∂Gi

∂χ

∣∣∣
χ=χi

+ ∂Di

∂χ

∣∣∣
χ=χi

)
A∗i

A∗T

i A∗i
. (D.3)

Here the superscript T denotes the transpose. Letting Fi = Gi + Di, the strength of
disruptive selection, i.e., the curvature of the fitness landscape around a resident trait
will be:

∂2λi
∂χ2

∣∣∣∣∣
χ=χi

=
A∗T

i
∂2Fi

∂χ2

∣∣∣
χ=χi

A∗i
A∗T

i A∗i
+ 2

∑
n6=d

(
AT
n
∂Fi

∂χ

∣∣∣
χ=χi

Ad

)2

AT
nAn ·AT

d Ad · (λd − λn) , (D.4)

where Ad is the eigenvector corresponding to the dominant eigenvalue λd of Fi, and
the sum is over all other eigenvectors An corresponding to eigenvalues λn of Fi. The

39



eigenvector corresponding to the dominant eigenvalue is the same as the equilibrium
distribution of the phenotype, i.e., Ad = A∗i . This expression can be used to differenti-
ate sympatric and parapatric diversification in the sense of Appendix B. In the discrete
patch case the situation is similar to the well known case of eigenvalue sensitivity analy-
sis for matrix models (see Caswell 2001). However what both permits and makes useful
the expressions Eq. D.3 and Eq. D.4 is that for symmetric dispersal matrices, the whole
matrix F is symmetric and so has equal left and right eigenvectors.

The matrix formulation of the equations is also the basis of the numerical solutions
to the partial differential equation models in this paper, as they naturally arise as
approximations to the PDE-systems.

Online Appendix E: Details of the sinking phytoplankton model

The model for the population dynamics of sinking algae competing for light and nu-
trients is the same as the fixed stoichiometry version of a model used by Jäger et al.
(2010). We reproduce a brief description of the system and its equations here, as well
as how evolutionary dynamics are introduced to the system.

The rates of change of algae and dissolved nutrients are described by the equations
∂Aj(z, t)

∂t
= Gj(R, I)Aj − lbgAj − v

∂Aj
∂z

+ d
∂2Aj
∂z2 (E.1a)

∂R(z, t)
∂t

= −q
∑
j

Gj(R, I)Aj + qlbg
∑
j

Aj + d
∂2R

∂z2 , (E.1b)

where Aj is the density of phenotype j, and R is the concentration of dissolved nutrients.
Light intensity at depth z is described by Beer-Lambert’s law

I(z) = I0 exp
−k ∫ z

0

∑
j

Aj(s, t)ds− kbgz

, (E.2)

with algal light attenuation coefficient k, background attenuation kbg, and incoming
light intensity at the surface of the water column I0. The light and nutrients are used
for algal growth in a multiplicative manner described by two Monod functions,

Gj(R, I) = Gmax
R

Mj +R

I

Hj + I
, (E.3)

with half-saturation constants for nutrients and light Mj and Hj. The algae suffer
background losses lbg, whose relative nutrient content, q, is instantly remineralized into
dissolved nutrients. Furthermore, algae diffuse at rate d, and sink with speed v. The
water column has reflective boundary conditions at the top described by[

vAj − d
∂Aj
∂z

]
z=0

= 0, ∂R

∂z

∣∣∣∣∣
z=0

= 0. (E.4)
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Algae at the bottom of the water column (zmax) sink into the sediment as described by[
vAj − d

∂Aj
∂z

]
z=zmax

= vAj(zmax), (E.5)

where algal nutrients become part of the sediment nutrient stock Rs. Sedimented
nutrients are mineralized and returned to the water column at rate r, yielding the rate
of change

dRs

dt = −rRs + qvA(zmax), (E.6)

and the boundary condition for dissolved nutrients at the bottom of the water column

∂R

∂z

∣∣∣∣∣
z=zmax

= r

d
Rs. (E.7)

All state variables and parameters are listed with units in Table E.1.

Table E.1: Parameters and state variables in Example 2.

Quantity Definition Value/range units
Aj Concentration of phenotype j 10∗ mg C m−3

R Nutrient concentration 10∗ mg R m−3

Rs Sedimented nutrients 100∗ mg R m−2

I Light intensity µmol photons m−2 s−1

lbg Background mortality 0.2 day−1

v Sinking speed (0.01, 3.0) m day−1

d Turbulent diffusion coefficient 10 m2 day−1

q Algal nutrient quota 0.02 mg R mg C−1

r Specific mineralization rate of sedimented nutrients 0.02 day−1

Gmax Maximum specific algal production 1.08 day−1

Mj Nutrient uptake half-saturation constant of phenotype j (0,∞) mg R m−3

Hj Light uptake half-saturation constant of phenotype j (0,∞) µmol photons m−2 s−1

I0 Light intensity at the surface 1400 µmol photons m−2 s−1

k Algal light attenuation coefficient 0.0003 m2 mg C−1

kbg Background light attenuation coefficient 0.1 m−1

zmax Water column depth 50 m
M0 Baseline nutrient half-saturation constant 0.5 mg R m−3

H0 Baseline light half-saturation constant 50 µmol photons m−2 s−1

χj Trait value of phenotype j (0,∞) -

Note: Values marked with ∗ are initial conditions. The values of the parameters are chosen
to provide a good illustration, rather than to represent any specific natural conditions.

We introduce evolutionary dynamics to the system by letting the half-saturation
constants for light and nutrient uptake be functions of an evolvable trait χj so that
Mj = M0/χj and Hj = H0χj. In order to study the evolutionary dynamics of the
system, one would want to use Eq. 10 to calculate the selection gradient, but the
advection term in the operator Fj = Gj − lbg− v∂/∂z+ d∂2/∂z2 prevents it from being
on reaction-diffusion form. It is however possible to transform equations E.1a, E.4, and
E.5 into the right form using the variable transform used by e.g., Ryabov and Blasius
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(2008). To do this we note that a reaction-advection-diffusion equation can be written
in the general form

∂A(x, t)
∂t

= FA = (G− v · ∇+ d∆)A, (E.8)

where the advection term −v · ∇, describing a directional flow, makes the operator F
not self-adjoint. Yet, for constant velocity fields v, it can be transformed into reaction-
diffusion form by introducing the variable transformation

A = Ã exp
(v · x

2d

)
, (E.9)

which results in the transformed equation

∂Ã

∂t
= (G− |v|

2

4d + d∆)Ã = F̃ Ã. (E.10)

This equation is now on the right form. The boundary conditions of the system must
be transformed using the same variable transform, and the operator F̃ must be checked
to be self-adjoint with the new boundary conditions.

Using this transform for the sinking algae system we get:

∂Ãj(z, t)
∂t

= GjÃj − lbgÃj −
v2

4dÃj + d
∂2Ãj
∂z2 = F̃jÃj (E.11a)

∂Ãj
∂z

∣∣∣∣∣
z=0

= v

2dÃj(0), ∂Ãj
∂z

∣∣∣∣∣
z=zmax

= − v

2dÃj(zmax). (E.11b)

Under these transformed boundary conditions the operator F̃j is of the right form,
and Eq. 10 can be used to investigate the evolutionary dynamics of the sinking algae.
One can check that the transformed operator fulfills the criterion of self-adjointedness
(Appendix A). In this example, there are also auxiliary equations describing the dis-
solved and sedimented nutrient dynamics. However, these equations still depend on
the untransformed density A, and need not be transformed. Alternatively, they can be
rewritten using Eq. E.9 so that e.g., the dissolved nutrient dynamics become

∂R(z, t)
∂t

= −q
∑
j

Gj(R, I)Ãj exp
(
vz

2d

)
+ qlbg

∑
j

Ãj exp
(
vz

2d

)
+ d

∂2R

∂z2 . (E.12)

Online Appendix F: An analytically treatable two-patch model

This example is designed to be so simple as to be analytically tractable. Consequently,
our method yields an analytical expression for the selection gradient from which both
the direction of selection and the endpoint of trait evolution can be directly inferred.
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The purpose of the example is to provide the reader interested in understanding the
application of the techniques a minimal example to which they are applicable.

The system consists of two discrete patches containing S phenotypes, of which
phenotype j has the densities yj = (yj1, yj2) in patches 1 and 2, respectively. We
assume that patch 1 is habitable and thus a potential source habitat, that patch 2 is an
uninhabitable sink habitat, and that the two patches are linked by passive transport.
This yields the dynamic equations:

dyj1
dt = gjyj1(1−

S∑
k=1

yk1) + d(yj2 − yj1) (F.1)

dyj2
dt = −µjyj2 + d(yj1 − yj2). (F.2)

Here gj is the intrinsic growth rate of phenotype j in patch 1, which is discounted by
summed intra- and inter-phenotype competition, µj is the mortality rate of phenotype
j in patch 2, and d is an environmentally determined (i.e., non-evolving) rate of passive
transport between the two patches, assumed to be equal for all phenotypes. When
the system contains a single resident phenotype with density yr the equations can be
expressed in matrix form as:

dyr

dt = Fryr =
[
gr(1− yr1)− d d

d −µr − d

] [
yr1
yr2

]
(F.3)

For this single morph the system has two equilibria, which are locally stable for different
conditions:

y∗ =
 1− dµ

g(d+µ)
d

d+µ

(
1− dµ

g(d+µ)

) Stable when g > µ or g < µ, d <
gµ

µ− g
(F.4)

y∗0 =
[
0
0

]
Stable when g < µ, d >

gµ

µ− g
. (F.5)

The stability was determined by eigenvalue analysis of the system’s Jacobian matrix.
We introduce evolutionary dynamics by letting the growth and mortality rates depend
on an evolvable trait χ so that µ(χ) = χ and g(χ) = 1−(χ−1)2. The evolving trait can
take on any value in the range 0 < χ < 1, yielding a trade-off between growth rate in
patch 1 and mortality rate in patch 2. For any trait value in this range, there exists an
interior equilibrium of the resident phenotype y∗r = (y∗r1, y∗r2) that is ecologically stable
for the entire evolutionary process, since g − µ = χ − χ2 > 0. We can thus express
the equilibrium densities y∗r1 and y∗r2 of the resident phenotype (and subsequently the
selection gradient acting on trait χr) as functions of only two parameters: the passive
transport rate d and the resident trait value χr:

y∗r =
[
y∗r1
y∗r2

]
=
 1− d

(d+χr)(2−χr)
d

d+χr

(
1− d

(d+χr)(2−χr)

) . (F.6)
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The dynamics of a rare mutant with density ym and trait χ will be governed by the
equation dym/dt = Fmym with

Fm =
[
gm(χ)(1− y∗r1)− d d

d −µm(χ)− d

]
. (F.7)

The invasion fitness of the mutant could now be determined by calculating the eigen-
values of the matrix Fm and finding the largest eigenvalue. This is certainly feasible
for two patches, as we show below, but the problem quickly becomes computationally
intractable as the number of patches increases, and the matrix consequently grows in
size. The perturbation techniques introduced in this manuscript sidesteps this difficulty
by offering a straightforward formula for the selection gradient that can be evaluated
based on model ingredients and equilibrium densities. To determine the selection gradi-
ent based on this formula, we first express Eq. F.7 as a sum of two matrices representing
population growth and passive transport:

Fm =
[
g(χ)(1− y∗1(χr)) 0

0 −µ(χ)

]
︸ ︷︷ ︸

G

+d
[
−1 1

1 −1

]
︸ ︷︷ ︸

δ

. (F.8)

Here matrices G and δ are discrete 2-patch analogues of the spatially continuous func-
tion G(x) and the Laplacian ∆, respectively, in Eq. 6. Because the trait χ does not
affect the passive transport rate d, selection acts only on the local growth rates in
patches 1 and 2. Hence, we can use a matrix version of Eq. 11 to average the local
selection gradients ∂G11/∂χ|χr and ∂G22/∂χ|χr on patches 1 and 2, respectively, where
we sum over all patches rather than integrating over continuous space (see Appendices
A and D for details):

D(χr) =
y∗2r1

(
∂G11
∂χ

∣∣∣
χr

)
+ y∗2r2

(
∂G22
∂χ

∣∣∣
χr

)
y∗2r1 + y∗2r2

=

(
1− d

2 − χr
)

2dχr

(2− χr)(2d2 + 2dχr + χ2
r ) . (F.9)

This equation shows that the selection gradient is positive for 0 < χr < 1 − d
2 and

negative for 1 − d
2 < χr < 1. Through gradual evolution, a monomorphic population

will thus gradually approach the singular trait value χr = 1 − d/2 , provided that
0 < d < 2. This singular trait value can be shown to be evolutionarily stable and
thus the endpoint of the evolutionary process. Hence, with increasing rate of passive
transport phenotypes become increasingly adapted to survival in the sink habitat at
the expense of a reduced growth rate in the source habitat.

Note that even in this highly simplified example, the analytical expressions for the
local equilibrium densities (Eq. F.6) and the spatially integrated selection gradient
(Eq. F.9) are rather complex. In realistic ecological and evolutionary scenarios these
expressions will usually have to be evaluated numerically, but the calculation proceeds
through the very same steps as in this example.
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As a comparison, we compute the selection gradient directly from the dominant
eigenvalue. The invasion fitness of the rare mutant is given by the dominant eigenvalue
of Fm(χr, χ), λd(χr, χ). Since Fm is a 2 × 2 matrix we can compute this eigenvalue
directly:

λd(χr, χ) = d+ χ
1 + (χ− 2)y∗r1 − χ

2 +

+

√
χ2(χ− 2)(y∗r1 − 1) [(y∗r1 − 1)(χ− 2) + 2] + 4d2 + χ2

2 ,

(F.10)

where the χr dependence is in y∗r1. We can then compute the selection gradient as

D(χr) = ∂λd

∂χ

∣∣∣∣
χr

= dχr(d+ 2χr − 2)
(χr − 2)(2d2 + 2dχr + χ2

r ) . (F.11)

Though not shown, these calculations are significantly lengthier than those of the
method used in the main text, and for larger matrices this difference becomes increas-
ingly pronounced.

Online Appendix G: Why there are gaps in figures 3 and 4B

Consider the bifurcation diagrams of Fig. 3 and to a lesser degree Fig. 4B of how the
eco-evolutionary equilibrium distributions of traits change with changing diffusivity or
sinking speeds. These both exhibit gaps of various sizes as the system transition to a
state with a different number of resident phenotypes. These gaps are not the result of
lacking numerical resolution, but are the consequence of one of two types of bifurcation
in trait-space that occur when diffusivity or sinking speed changes. The first type, which
leads to smooth transitions without gaps, is observed in Fig. 3, e.g., when the initial
single phenotype transitions into two at around d ≈ 3.8 · 10−4. Such transitions occur
when the negative curvature of the fitness landscape around the resident phenotype
changes to positive curvature as diffusivity decreases. This permits the new phenotypes
to be in principle arbitrarily close to one another in trait-space for an appropriate value
of d, leading to a bifurcation without gaps.

The second type of bifurcation, observed e.g., when two phenotypes transition into
three in Fig. 3 at around d ≈ 2.9 · 10−4, occurs when niche space opens up in-between
two phenotypes as the fitness landscape is deformed. Fig. G.1 depicts a sequence of
fitness landscapes around that bifurcation point showing how the deformation of the
fitness landscape leads to the sudden availability of niche space as the central peak
reaches above an invasion fitness of zero. For further details, see Geritz et al. (1999).
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Figure G.1: Fitness landscapes of consumer ensembles at eco-evolutionary equilibrium for
values of the diffusivity around the bifurcation point between two and three consumers in Fig.
3. The value of the rate of diffusion is indicated at the bottom left in each panel, and the red
dots mark the trait values of the resident consumers in the system. The sequence of fitness
landscapes show how as diffusivity decreases from the top to the bottom landscape, niche
space suddenly opens up in the middle of the resident consumers as the fitness landscape is
deformed and the peak in the middle reaches above λd = 0. This phenomenon explains the
many gaps seen in the bifurcation diagram in Fig. 3. The same mechanism is responsible for
the red phenotype in Fig. 4B appearing and disappearing in the ensemble.
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