19 research outputs found

    Face and content validity of a novel, web-based otoscopy simulator for medical education.

    Get PDF
    BACKGROUND: Despite the fact that otoscopy is a widely used and taught diagnostic tool during medical training, errors in diagnosis are common. Physical otoscopy simulators have high fidelity, but they can be expensive and only a limited number of students can use them at a given time. OBJECTIVES: 1) To develop a purely web-based otoscopy simulator that can easily be distributed to students over the internet. 2) To assess face and content validity of the simulator by surveying experts in otoscopy. METHODS: An otoscopy simulator, OtoTrainℱ, was developed at Western University using web-based programming and Unity 3D. Eleven experts from academic institutions in North America were recruited to test the simulator and respond to an online questionnaire. A 7-point Likert scale was used to answer questions related to face validity (realism of the simulator), content validity (expert evaluation of subject matter and test items), and applicability to medical training. RESULTS: The mean responses for the face validity, content validity, and applicability to medical training portions of the questionnaire were all ≀3, falling between the Agree , Mostly Agree , and Strongly Agree categories. The responses suggest good face and content validity of the simulator. Open-ended questions revealed that the primary drawbacks of the simulator were the lack of a haptic arm for force feedback, a need for increased focus on pneumatic otoscopy, and few rare disorders shown on otoscopy. CONCLUSION: OtoTrainℱ is a novel, web-based otoscopy simulator that can be easily distributed and used by students on a variety of platforms. Initial face and content validity was encouraging, and a skills transference study is planned following further modifications and improvements to the simulator

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Personality influences temporal discounting preferences: Behavioral and brain evidence

    Get PDF
    Personality traits are stable predictors of many life outcomes that are associated with important decisions that involve tradeoffs over time. Therefore, a fundamental question is how tradeoffs over time vary from person to person in relation to stable personality traits. We investigated the influence of personality, as measured by the Five-Factor Model, on time preferences and on neural activity engaged by intertemporal choice. During functional magnetic resonance imaging (fMRI), participants made choices between smaller-sooner and larger-later monetary rewards. For each participant, we estimated a constant-sensitivity discount function that dissociates impatience (devaluation of future consequences) from time sensitivity (consistency with rational, exponential discounting). Overall, higher neuroticism was associated with a relatively greater preference for immediate rewards and higher conscientiousness with a relatively greater preference for delayed rewards. Specifically, higher conscientiousness correlated positively with lower short-term impatience and more exponential time preferences, whereas higher neuroticism (lower emotional stability) correlated positively with higher short-term impatience and less exponential time preferences. Cognitive-control and reward brain regions were more activated when higher conscientiousness participants selected a smaller-sooner reward and, conversely, when higher neuroticism participants selected a larger-later reward. The greater activations that occurred when choosing rewards that contradicted personality predispositions may reflect the greater recruitment of mental resources needed to override those predispositions. These findings reveal that stable personality traits fundamentally influence how rewards are chosen over time.National Institute on Aging (K01 AG040197

    Underground energy-related product storage and sequestration: site characterization, risk analysis, and monitoring

    No full text
    This paper presents a high-level overview of site characterization, risk analysis, and monitoring priorities for underground energy-related product storage or sequestration facilities. The siting of an underground energy-related product storage or sequestration facility depends on several important factors beginning with the area of review. Collection of all existing and available records and data from within the rock volume, including potential vulnerabilities such as prior containment issues, proximity to infrastructure and/or population centers, must be evaluated. Baselining of natural processes before storage or sequestration operations begin provides the basis for assessing the effects of storage or sequestration on the surroundings. These initial investigations include geological, geophysical, and geochemical analyses of the suitability of the geological host rock and environs for storage or sequestration. A risk analysis identifies and evaluates threats and hazards, the potential impact should they develop into unwanted circumstances or events, and the consequences to the facility should any of them occur. This forms the basis for framing effective mitigation measures. combines the identified threats (unactualized hazards) and hazards, their potential magnitudes, and the consequences to the facility should any of them occur. This forms the basis for framing effective mitigation measures. Risk analyses produce deterministic and/or probabilistic predictions whose utility depends on the quality of threat, hazard, and consequence characterization. A comprehensive monitoring program that may include downhole well surveillance, observation wells, geochemical sampling, and well testing ensures that the facility operates as designed and that unforeseen issues, such as product migration or loss of integrity, can be identified and mitigated. In addition to these technical issues, human factors and public perception of a project are a critical part of the site characterization, construction, and operational phases of a project. Despite differences between underground storage and sequestration, sets of characterization, risk analysis, and monitoring approaches that were developed for underground natural gas storage or for carbon dioxide sequestration could be used for underground storage or sequestration of any type of energy-related product. Recommendations from this work include: (1) develop an industry-standard evaluation protocol (workflow) for the evaluation of salt beds, aquifers, depleted reservoirs, underground mines and cased wellbores for potential underground storage or sequestration development beyond those in use today; and (2) develop an industry-wide collaborative process whereby incident and near-miss data related to underground storage or sequestration operations can be reported, documented, and shared for use in refining risk analysis modeling.ISSN:0375-6440ISSN:0305-8719ISSN:2041-492

    An overview of underground energy-related product storage and sequestration

    No full text
    Storage of energy-related products in the geologic subsurface provides reserve capacity, resilience, and security to the energy supply chain. Sequestration of energy-related products ensures long-term isolation from the environment and, for CO2, a reduction in atmospheric emissions. Both porous-rock media and engineered caverns can provide the large storage volumes needed today and in the future. Methods for site characterization and modeling, monitoring, and inventory verification have been developed and deployed to identify and mitigate geologic threats and hazards such as induced seismicity and loss of containment. Broader considerations such as life-cycle analysis; environment, social and governance (ESG) impact; and effective engagement with stakeholders can reduce project uncertainty and cost while promoting sustainability during the ongoing energy transition toward net-zero or low-carbon economies

    An overview of underground energy-related product storage and sequestration

    No full text
    Storage of energy-related products in the geologic subsurface provides reserve capacity, resilience, and security to the energy supply chain. Sequestration of energy-related products ensures long-term isolation from the environment and, for CO2, a reduction in atmospheric emissions. Both porous-rock media and engineered caverns can provide the large storage volumes needed today and in the future. Methods for site characterization and modeling, monitoring, and inventory verification have been developed and deployed to identify and mitigate geologic threats and hazards such as induced seismicity and loss of containment. Broader considerations such as life-cycle analysis; environment, social and governance (ESG) impact; and effective engagement with stakeholders can reduce project uncertainty and cost while promoting sustainability during the ongoing energy transition toward net-zero or low-carbon economies.ISSN:0375-6440ISSN:0305-8719ISSN:2041-492
    corecore