126 research outputs found

    Antagonism of the mammalian target of rapamycin selectively mediates metabolic effects of epidermal growth factor receptor inhibition and protects human malignant glioma cells from hypoxia-induced cell death

    Get PDF
    Although inhibition of the epidermal growth factor receptor is a plausible therapy for malignant gliomas that, in vitro, enhances apoptosis, the results of clinical trials have been disappointing. The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that integrates starvation signals and generates adaptive responses that aim at the maintenance of energy homeostasis. Antagonism of mTOR has been suggested as a strategy to augment the efficacy of epidermal growth factor receptor inhibition by interfering with deregulated signalling cascades downstream of Akt. Here we compared effects of antagonism of mTOR utilizing rapamycin or a small hairpin RNA-mediated gene silencing to those of epidermal growth factor receptor inhibition or combined inhibition of epidermal growth factor receptor and mTOR in human malignant glioma cells. In contrast to epidermal growth factor receptor inhibition, mTOR antagonism neither induced cell death nor enhanced apoptosis induced by CD95 ligand or chemotherapeutic drugs. However, mTOR inhibition mimicked the hypoxia-protective effects of epidermal growth factor receptor inhibition by maintaining adenosine triphosphate levels. These in vitro experiments thus challenge the current view of mTOR as a downstream target of Akt that mediates antiapoptotic stimuli. Under the conditions of the tumour microenvironment, metabolic effects of inhibition of epidermal growth factor receptor, Akt and mTOR may adversely affect outcome by protecting the hypoxic tumour cell fractio

    Efficacy and toxicity of bimodal radiotherapy in WHO grade 2 meningiomas following subtotal resection with carbon ion boost:Prospective phase 2 MARCIE trial

    Get PDF
    Background: Novel radiotherapeutic modalities using carbon ions provide an increased relative biological effectiveness (RBE) compared to photons, delivering a higher biological dose while reducing radiation exposure for adjacent organs. This prospective phase 2 trial investigated bimodal radiotherapy using photons with carbon-ion (C12)-boost in patients with WHO grade 2 meningiomas following subtotal resection (Simpson grade 4 or 5).Methods:A total of 33 patients were enrolled from July 2012 until July 2020. The study treatment comprised a C12-boost (18 Gy [RBE] in 6 fractions) applied to the macroscopic tumor in combination with photon radiotherapy (50 Gy in 25 fractions). The primary endpoint was the 3-year progression-free survival (PFS), and the secondary endpoints included overall survival, safety and treatment toxicities. Results:With a median follow-up of 42 months, the 3-year estimates of PFS, local PFS and overall survival were 80.3%, 86.7%, and 89.8%, respectively. Radiation-induced contrast enhancement (RICE) was encountered in 45%, particularly in patients with periventricularly located meningiomas. Patients exhibiting RICE were mostly either asymptomatic (40%) or presented immediate neurological and radiological improvement (47%) after the administration of corticosteroids or bevacizumab in case of radiation necrosis (3/33). Treatment-associated complications occurred in 1 patient with radiation necrosis who died due to postoperative complications after resection of radiation necrosis. The study was prematurely terminated after recruiting 33 of the planned 40 patients. Conclusions:Our study demonstrates a bimodal approach utilizing photons with C12-boost may achieve a superior local PFS to conventional photon RT, but must be balanced against the potential risks of toxicities.</p

    Methylome analyses of three glioblastoma cohorts reveal chemotherapy sensitivity markers within DDR genes

    Get PDF
    Background: Gliomas evade current therapies through primary and acquired resistance and the effect of temozolomide is mainly restricted to methylguanin-O6-methyltransferase promoter (MGMT) promoter hypermethylated tumors. Further resistance markers are largely unknown and would help for better stratification. Methods: Clinical data and methylation profiles from the NOA-08 (104, elderly glioblastoma) and the EORTC 26101 (297, glioblastoma) studies and 398 patients with glioblastoma from the Heidelberg Neuro-Oncology center have been analyzed focused on the predictive effect of DNA damage response (DDR) gene methylation. Candidate genes were validated in vitro. Results: Twenty-eight glioblastoma 5'-cytosine-phosphat-guanine-3' (CpGs) from 17 DDR genes negatively correlated with expression and were used together with telomerase reverse transcriptase (TERT) promoter mutations in further analysis. CpG methylation of DDR genes shows highest association with the mesenchymal (MES) and receptor tyrosine kinase (RTK) II glioblastoma subgroup. MES tumors have lower tumor purity compared to RTK I and II subgroup tumors. CpG hypomethylation of DDR genes TP73 and PRPF19 correlated with worse patient survival in particular in MGMT promoter unmethylated tumors. TERT promoter mutation is most frequent in RTK I and II subtypes and associated with worse survival. Primary glioma cells show methylation patterns that resemble RTK I and II glioblastoma and long term established glioma cell lines do not match with glioblastoma subtypes. Silencing of selected resi

    Molecular diagnostic tools for the World Health Organization (WHO) 2021 classification of gliomas, glioneuronal and neuronal tumors; an EANO guideline

    Get PDF
    In the 5th edition of the WHO CNS tumor classification (CNS5, 2021), multiple molecular characteristics became essential diagnostic criteria for many additional CNS tumor types. For those tumors, an integrated, 'histomolecular' diagnosis is required. A variety of approaches exists for determining the status of the underyling molecular markers. The present guideline focuses on the methods that can be used for assessment of the currently most informative diagnostic and prognostic molecular markers for the diagnosis of gliomas, glioneuronal and neuronal tumors. The main characteristics of the molecular methods are systematically discussed, followed by recommendations and information on available evidence levels for diagnostic measures. The recommendations cover DNA and RNA next-generation-sequencing, methylome profiling, and select assays for single/limited target analysis, including immunohistochemistry. Additionally, because of its importance as a predictive marker in IDH-wildtype glioblastomas, tools for the analysis of MGMT promoter status are covered. A structured overview of the different assays with their characteristics, especially their advantages and limitations, is provided, and requirements for input material and reporting of results are clarified. General aspects of molecular diagnostic testing regarding clinical relevance, accessibility, cost, implementation, regulatory and ethical aspects are discussed as well. Finally, we provide an outlook on new developments in the landscape of molecular testing technologies in neuro-oncology

    Prognostic significance of IDH-1 and MGMT in patients with glioblastoma: One step forward, and one step back?

    Get PDF
    A group of 160 patients with primary glioblastoma treated with radiotherapy and temozolomide was analyzed for the impact of O6-methly-guanly-methyl-transferase (MGMT)-promoter methylation as well as isocitrate dehydrogenase (IDH)1-mutational status. Unexpectedly, overall survival or progression-free survival were not longer in the group with methylated MGMT-promoter as compared to patients without that methylation. IDH-1 mutations were significantly associated with increased overall survival

    Treatment of patients with atypical meningiomas Simpson grade 4 and 5 with a carbon ion boost in combination with postoperative photon radiotherapy: The MARCIE Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment standard for patients with atypical or anaplastic meningioma is neurosurgical resection. With this approach, local control ranges between 50% and 70%, depending on resection status. A series or smaller studies has shown that postoperative radiotherapy in this patient population can increase progression-free survival, which translates into increased overall survival. However, meningiomas are known to be radioresistant tumors, and radiation doses of 60 Gy or higher have been shown to be necessary for tumor control.</p> <p>Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE), which can be calculated between 2 and 5 depending on the cell line as well as the endpoint analyzed.</p> <p>First data obtained within the Phase I/II trial performed at GSI in Darmstadt on carbon ion radiotherapy for patients with high-risk meningiomas has shown safety, and treatment results are promising.</p> <p>Methods/design</p> <p>The Phase II-MARCIE-Study will evaluate a carbon ion boost applied to the macroscopic tumor in conjunction with photon radiotherapy in patients with atypical menigiomas after incomplete resection or biopsy.</p> <p>Primary endpoint is progression-free survival, secondary endpoints are overall survival, safety and toxicity.</p> <p>Discussion</p> <p>Based on published data on the treatment of atypical meningiomas with carbon ions at GSI, the present study will evaluate this treatment concept in a larger patient population and will compare outcome to current standard photon treatment.</p> <p>Trial registration</p> <p>NCT01166321</p

    New strategies for New Physics search in B -> K* nu anti-nu, B -> K nu anti-nu and B -> X(s) nu anti-nu decays

    Full text link
    The rare decay B -> K* nu anti-nu allows a transparent study of Z penguin and other electroweak penguin effects in New Physics (NP) scenarios in the absence of dipole operator contributions and Higgs (scalar) penguin contributions that are often more important than Z contributions in B -> K* l+l- and B(s) -> l+l- decays. We present a new analysis of B -> K* nu anti-nu with improved form factors and of the decays B -> K nu anti-nu and B -> X(s) nu anti-nu in the SM and in a number of NP scenarios like the general MSSM, general scenarios with modified Z/Z' penguins and in a singlet scalar extension of the SM. We also summarize the results in the Littlest Higgs model with T-parity and a Randall-Sundrum (RS) model with custodial protection of left-handed Z-di-dj couplings. Our SM prediction BR(B -> K* nu anti-nu)=(6.8^+1.0_-1.1) x 10^-6 turns out to be significantly lower than the ones present in the literature. Our improved calculation BR(B -> X(s) nu anti-nu)=(2.7+-0.2) x 10^-5 in the SM avoids the normalization to the BR(B -> X(c) e anti-nu(e)) and, with less than 10% total uncertainty, is the most accurate to date. The results for the SM and NP scenarios can be transparently summarized in a (epsilon,eta) plane with a non-vanishing eta signalling the presence of new right-handed down-quark flavour violating couplings which can be ideally probed by the decays in question. Measuring the three branching ratios and one additional polarization observable in B -> K* nu anti-nu allows to overconstrain the resulting point in the (epsilon,eta) plane with (epsilon,eta)=(1,0) corresponding to the SM. The correlations of these three channels with the rare decays K+ -> pi+ nu anti-nu, KL -> pi0 nu anti-nu, B -> X(s) l+ l- and B(s) -> mu+ mu- offer powerful tests of New Physics with new right-handed couplings and non-MFV interactions.Comment: 31 pages, 14 figures, 3 tables. v2: 9 references, minor clarifications and corrections added. Conclusions unchange

    Glioblastomas with primitive neuronal component harbor a distinct methylation and copy‑number profle with inactivation of TP53, PTEN, and RB1

    Get PDF
    Glioblastoma IDH-wildtype presents with a wide histological spectrum. Some features are so distinctive that they are considered as separate histological variants or patterns for the purpose of classification. However, these usually lack defined (epi-)genetic alterations or profiles correlating with this histology. Here, we describe a molecular subtype with overlap to the unique histological pattern of glioblastoma with primitive neuronal component. Our cohort consists of 63 IDH-wildtype glioblastomas that harbor a characteristic DNA methylation profile. Median age at diagnosis was 59.5 years. Copy-number variations and genetic sequencing revealed frequent alterations in TP53, RB1 and PTEN, with fewer gains of chromosome 7 and homozygous CDKN2A/B deletions than usually described for IDH-wildtype glioblastoma. Gains of chromosome 1 were detected in more than half of the cases. A poorly differentiated phenotype with frequent absence of GFAP expression, high proliferation index and strong staining for p53 and TTF1 often caused misleading histological classification as carcinoma metastasis or primitive neuroectodermal tumor. Clinically, many patients presented with leptomeningeal dissemination and spinal metastasis. Outcome was poor with a median overall survival of only 12 months. Overall, we describe a new molecular subtype of IDH-wildtype glioblastoma with a distinct histological appearance and genetic signature.publishedVersio

    Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA): a molecularly distinct brain tumor type with recurrent NTRK gene fusions

    Get PDF
    Glioneuronal tumors are a heterogenous group of CNS neoplasms that can be challenging to accurately diagnose. Molecular methods are highly useful in classifying these tumors-distinguishing precise classes from their histological mimics and identifying previously unrecognized types of tumors. Using an unsupervised visualization approach of DNA methylation data, we identified a novel group of tumors (n = 20) that formed a cluster separate from all established CNS tumor types. Molecular analyses revealed ATRX alterations (in 16/16 cases by DNA sequencing and/or immunohistochemistry) as well as potentially targetable gene fusions involving receptor tyrosine-kinases (RTK; mostly NTRK1-3) in all of these tumors (16/16; 100%). In addition, copy number profiling showed homozygous deletions of CDKN2A/B in 55% of cases. Histological and immunohistochemical investigations revealed glioneuronal tumors with isomorphic, round and often condensed nuclei, perinuclear clearing, high mitotic activity and microvascular proliferation. Tumors were mainly located supratentorially (84%) and occurred in patients with a median age of 19 years. Survival data were limited (n = 18) but point towards a more aggressive biology as compared to other glioneuronal tumors (median progression-free survival 12.5 months). Given their molecular characteristics in addition to anaplastic features, we suggest the term glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) to describe these tumors. In summary, our findings highlight a novel type of glioneuronal tumor driven by different RTK fusions accompanied by recurrent alterations in ATRX and homozygous deletions of CDKN2A/B. Targeted approaches such as NTRK inhibition might represent a therapeutic option for patients suffering from these tumors
    • …
    corecore