16 research outputs found

    Chronic Hepatitis B and C Co-Infection Increased All-Cause Mortality in HAART-Naive HIV Patients in Northern Thailand

    Get PDF
    A total of 755 highly active antiretroviral therapy (HAART)-naive HIV-infected patients were enrolled at a government hospital in Thailand from 1 June 2000 to 15 October 2002. Census date of survival was on 31 October 2004 or the date of HAART initiation. Of 700 (92.6%) patients with complete data, the prevalence of hepatitis B virus (HBV) surface antigen and anti-hepatitis C virus (HCV) antibody positivity was 11.9% and 3.3%, respectively. Eight (9.6%) HBV co-infected patients did not have anti-HBV core antibody (anti-HBcAb). During 1166.7 person-years of observation (pyo), 258 (36.9%) patients died [22.1/100 pyo, 95% confidence interval (CI) 16.7–27.8]. HBV and probably HCV co-infection was associated with a higher mortality with adjusted hazard ratios (aHRs) of 1.81 (95% CI 1.30–2.53) and 1.90 (95% CI 0.98–3.69), respectively. Interestingly, HBV co-infection without anti-HBc Ab was strongly associated with death (aHR 6.34, 95% CI 3.99–10.3). The influence of hepatitis co-infection on the natural history of HAART-naive HIV patients requires greater attention

    HLA-Associated Immune Pressure on Gag Protein in CRF01_AE-Infected Individuals and Its Association with Plasma Viral Load

    Get PDF
    BACKGROUND: The human leukocyte antigen (HLA)-restricted cytotoxic T-lymphocyte (CTL) immune response is one of the major factors determining the genetic diversity of human immunodeficiency virus (HIV). There are few population-based analyses of the amino acid variations associated with the host HLA type and their clinical relevance for the Asian population. Here, we identified HLA-associated polymorphisms in the HIV-1 CRF01_AE Gag protein in infected married couples, and examined the consequences of these HLA-selected mutations after transmission to HLA-unmatched recipients. METHODOLOGY/PRINCIPAL FINDINGS: One hundred sixteen HIV-1-infected couples were recruited at a government hospital in northern Thailand. The 1.7-kb gag gene was amplified and directly sequenced. We identified 56 associations between amino acid variations in Gag and HLA alleles. Of those amino acid variations, 35 (62.5%) were located within or adjacent to regions reported to be HIV-specific CTL epitopes restricted by the relevant HLA. Interestingly, a significant number of HLA-associated amino acid variations appear to be unique to the CRF01_AE-infected Thai population. Variations in the capsid protein (p24) had the strongest associations with the viral load and CD4 cell count. The mutation and reversion rates after transmission to a host with a different HLA environment varied considerably. The p24 T242N variant escape from B57/58 CTL had a significant impact on the HIV-1 viral load of CRF01_AE-infected patients. CONCLUSIONS/SIGNIFICANCE: HLA-associated amino acid mutations and the CTL selection pressures on the p24 antigen appear to have the most significant impact on HIV replication in a CRF01_AE-infected Asian population. HLA-associated mutations with a low reversion rate accumulated as a footprint in this Thai population. The novel HLA-associated mutations identified in this study encourage us to acquire more extensive information about the viral dynamics of HLA-associated amino acid polymorphisms in a given population as effective CTL vaccine targets

    Chronic hepatitis B and C co-infection increased all-cause mortality in HAART-naive HIV patients in northern Thailand

    Get PDF
    A total of 755 highly active antiretroviral therapy (HAART)-naive HIV-infected patients were enrolled at a government hospital in Thailand from 1 June 2000 to 15 October 2002. Census date of survival was on 31 October 2004 or the date of HAART initiation. Of 700 (92·6%) patients with complete data, the prevalence of hepatitis B virus (HBV) surface antigen and anti-hepatitis C virus (HCV) antibody positivity was 11·9% and 3·3%, respectively. Eight (9·6%) HBV co-infected patients did not have anti-HBV core antibody (anti-HBcAb). During 1166·7 person-years of observation (pyo), 258 (36·9%) patients died [22·1/100 pyo, 95% confidence interval (CI) 16·7-27·8]. HBV and probably HCV co-infection was associated with a higher mortality with adjusted hazard ratios (aHRs) of 1·81 (95% CI 1·30-2·53) and 1·90 (95% CI 0·98-3·69), respectively. Interestingly, HBV co-infection without anti-HBc Ab was strongly associated with death (aHR 6·34, 95% CI 3·99-10·3). The influence of hepatitis co-infection on the natural history of HAART-naive HIV patients requires greater attention

    The evolutionary history of the CD209 (DC-SIGN) family in humans and non-human primates

    Get PDF
    The CD209 gene family that encodes C-type lectins in primates includes CD209 (DC-SIGN), CD209L (L-SIGN) and CD209L2. Understanding the evolution of these genes can help understand the duplication events generating this family, the process leading to the repeated neck region and identify protein domains under selective pressure. We compiled sequences from 14 primates representing 40 million years of evolution and from three non-primate mammal species. Phylogenetic analyses used Bayesian inference, and nucleotide substitutional patterns were assessed by codon-based maximum likelihood. Analyses suggest that CD209 genes emerged from a first duplication event in the common ancestor of anthropoids, yielding CD209L2 and an ancestral CD209 gene, which, in turn, duplicated in the common Old World primate ancestor, giving rise to CD209L and CD209. K(A)/K(S) values averaged over the entire tree were 0.43 (CD209), 0.52 (CD209L) and 0.35 (CD209L2), consistent with overall signatures of purifying selection. We also assessed the Toll-like receptor (TLR) gene family, which shares with CD209 genes a common profile of evolutionary constraint. The general feature of purifying selection of CD209 genes, despite an apparent redundancy (gene absence and gene loss), may reflect the need to faithfully recognize a multiplicity of pathogen motifs, commensals and a number of self-antigen

    A multiplexed Cas13-based assay with point-of-care attributes for simultaneous COVID-19 diagnosis and variant surveillance

    No full text
    Point-of-care (POC) nucleic acid detection technologies are poised to aid gold-standard technologies in controlling the COVID-19 pandemic, yet shortcomings in the capability to perform critically needed complex detection—such as multiplexed detection for viral variant surveillance—may limit their widespread adoption. Herein, we developed a robust multiplexed clustered regularly interspaced short palindromic repeats (CRISPR)-based detection using LwaCas13a and PsmCas13b to simultaneously diagnose severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and pinpoint the causative SARS-CoV-2 variant of concern (VOC)—including globally dominant VOCs Delta (B.1.617.2) and Omicron (B.1.1.529)—all the while maintaining high levels of accuracy upon the detection of multiple SARS-CoV-2 gene targets. The platform has several attributes suitable for POC use: premixed, freeze-dried reagents for easy use and storage; convenient direct-to-eye or smartphone-based readouts; and a one-pot variant of the multiplexed detection. To reduce reliance on proprietary reagents and enable sustainable use of such a technology in low- and middle-income countries, we locally produced and formulated our own recombinase polymerase amplification reaction and demonstrated its equivalent efficiency to commercial counterparts. Our tool—CRISPR-based detection for simultaneous COVID-19 diagnosis and variant surveillance that can be locally manufactured—may enable sustainable use of CRISPR diagnostics technologies for COVID-19 and other diseases in POC settings
    corecore