30 research outputs found
Density dynamics from current auto-correlations at finite time- and length-scales
We consider the increase of the spatial variance of some inhomogeneous,
non-equilibrium density (particles, energy, etc.) in a periodic quantum system
of condensed matter-type. This is done for a certain class of initial quantum
states which is supported by static linear response and typicality arguments.
We directly relate the broadening to some current auto-correlation function at
finite times. Our result is not limited to diffusive behavior, however, in that
case it yields a generalized Einstein relation. These findings facilitate the
approximation of diffusion constants/conductivities on the basis of current
auto-correlation functions at finite times for finite systems. Pursuing this,
we quantitatively confirm the magnetization diffusion constant in a spin chain
which was recently found from non-equilibrium bath scenarios.Comment: 4 pages, 1 figure, accepted for publication in Europhys. Let
Third quantization: a general method to solve master equations for quadratic open Fermi systems
The Lindblad master equation for an arbitrary quadratic system of n fermions
is solved explicitly in terms of diagonalization of a 4n x 4n matrix, provided
that all Lindblad bath operators are linear in the fermionic variables. The
method is applied to the explicit construction of non-equilibrium steady states
and the calculation of asymptotic relaxation rates in the far from equilibrium
problem of heat and spin transport in a nearest neighbor Heisenberg XY spin 1/2
chain in a transverse magnetic field.Comment: 24 pages, with 8 eps figures - few minor corrections to the published
version, e.g. anti-symmetrizing the matrix given by eq. (27
Transport in open spin chains: A Monte Carlo wave-function approach
We investigate energy transport in several two-level atom or spin-1/2 models
by a direct coupling to heat baths of different temperatures. The analysis is
carried out on the basis of a recently derived quantum master equation which
describes the nonequilibrium properties of internally weakly coupled systems
appropriately. For the computation of the stationary state of the dynamical
equations, we employ a Monte Carlo wave-function approach. The analysis
directly indicates normal diffusive or ballistic transport in finite models and
hints toward an extrapolation of the transport behavior of infinite models.Comment: to be published in Physical Reviews
From thermal rectifiers to thermoelectric devices
We discuss thermal rectification and thermoelectric energy conversion from
the perspective of nonequilibrium statistical mechanics and dynamical systems
theory. After preliminary considerations on the dynamical foundations of the
phenomenological Fourier law in classical and quantum mechanics, we illustrate
ways to control the phononic heat flow and design thermal diodes. Finally, we
consider the coupled transport of heat and charge and discuss several general
mechanisms for optimizing the figure of merit of thermoelectric efficiency.Comment: 42 pages, 22 figures, review paper, to appear in the Springer Lecture
Notes in Physics volume "Thermal transport in low dimensions: from
statistical physics to nanoscale heat transfer" (S. Lepri ed.
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.