1,180 research outputs found

    Tidal Disruption of Protoclusters in Giant Molecular Clouds

    Full text link
    We study the collapse of protoclusters within a giant molecular cloud (GMC) to determine the conditions under which collapse is significantly disrupted. Motivated by observations of star forming regions which exhibit flattened cloud structures, this study considers collapsing protoclusters with disk geometries. The collapse of a 10^3 Msun protocluster initially a distance of 2-10 pc from a 10^3 - 10^6 Msun point mass is numerically calculated. Simulations with zero initial relative velocity between the two are completed as well as simulations with relative velocities consistent with those observed in GMCs. The results allow us to define the conditions under which it is safe to assume protocluster collapse proceeds as if in isolation. For instance, we find the collapse of a 10^3 Msun protocluster will be significantly disrupted if it is within 2-4 pc of a 10^4 Msun point mass. Thus, the collapse of a 10^3 Msun protocluster can be considered to proceed as if in isolation if it is more than ~ 4 pc away from a 10^4 Msun compact object. In addition, in no portion of the sampled parameter space does the gravitational interaction between the protocluster disk and the massive particle significantly disperse the disk into the background GMC. We discuss the distribution of clusters of young stellar objects within the Perseus and Mon R2 star forming regions, which are consistent with the results of our simulations and the limitations of our results in gas dominated regions such as the Orion cloud.Comment: 12 pages, 6 figures, Accepted for publication in Ap

    Naturally occurring Ehrlichia chaffeensis infection in coyotes from Oklahoma.

    Get PDF
    A nested polymerase chain reaction assay was used to determine the presence of Ehrlichia chaffeensis, E. canis, and E. ewingii DNA in blood samples of free-ranging coyotes from central and northcentral Oklahoma. Of the 21 coyotes examined, 15 (71%) were positive for E. chaffeensis DNA; none was positive for E. canis or E. ewingii. Results suggest that E. chaffeensis infections are common in free-ranging coyotes in Oklahoma and that these wild canids could play a role in the epidemiology of human monocytotropic ehrlichiosis

    Early antenatal prediction of gestational diabetes in obese women: development of prediction tools for targeted intervention

    Get PDF
    All obese women are categorised as being of equally high risk of gestational diabetes (GDM) whereas the majority do not develop the disorder. Lifestyle and pharmacological interventions in unselected obese pregnant women have been unsuccessful in preventing GDM. Our aim was to develop a prediction tool for early identification of obese women at high risk of GDM to facilitate targeted interventions in those most likely to benefit. Clinical and anthropometric data and non-fasting blood samples were obtained at 15+0–18+6 weeks’ gestation in 1303 obese pregnant women from UPBEAT, a randomised controlled trial of a behavioural intervention. Twenty one candidate biomarkers associated with insulin resistance, and a targeted nuclear magnetic resonance (NMR) metabolome were measured. Prediction models were constructed using stepwise logistic regression. Twenty six percent of women (n = 337) developed GDM (International Association of Diabetes and Pregnancy Study Groups criteria). A model based on clinical and anthropometric variables (age, previous GDM, family history of type 2 diabetes, systolic blood pressure, sum of skinfold thicknesses, waist:height and neck:thigh ratios) provided an area under the curve of 0.71 (95%CI 0.68–0.74). This increased to 0.77 (95%CI 0.73–0.80) with addition of candidate biomarkers (random glucose, haemoglobin A1c (HbA1c), fructosamine, adiponectin, sex hormone binding globulin, triglycerides), but was not improved by addition of NMR metabolites (0.77; 95%CI 0.74–0.81). Clinically translatable models for GDM prediction including readily measurable variables e.g. mid-arm circumference, age, systolic blood pressure, HbA1c and adiponectin are described. Using a ≥35% risk threshold, all models identified a group of high risk obese women of whom approximately 50% (positive predictive value) later developed GDM, with a negative predictive value of 80%. Tools for early pregnancy identification of obese women at risk of GDM are described which could enable targeted interventions for GDM prevention in women who will benefit the most

    The genetic organisation of prokaryotic two-component system signalling pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two-component systems (TCSs) are modular and diverse signalling pathways, involving a stimulus-responsive transfer of phosphoryl groups from transmitter to partner receiver domains. TCS gene and domain organisation are both potentially informative regarding biological function, interaction partnerships and molecular mechanisms. However, there is currently little understanding of the relationships between domain architecture, gene organisation and TCS pathway structure.</p> <p>Results</p> <p>Here we classify the gene and domain organisation of TCS gene loci from 1405 prokaryotic replicons (>40,000 TCS proteins). We find that 200 bp is the most appropriate distance cut-off for defining whether two TCS genes are functionally linked. More than 90% of all TCS gene loci encode just one or two transmitter and/or receiver domains, however numerous other geometries exist, often with large numbers of encoded TCS domains. Such information provides insights into the distribution of TCS domains between genes, and within genes. As expected, the organisation of TCS genes and domains is affected by phylogeny, and plasmid-encoded TCS exhibit differences in organisation from their chromosomally-encoded counterparts.</p> <p>Conclusions</p> <p>We provide here an overview of the genomic and genetic organisation of TCS domains, as a resource for further research. We also propose novel metrics that build upon TCS gene/domain organisation data and allow comparisons between genomic complements of TCSs. In particular, '<it>percentage orphaned TCS genes</it>' (or 'Dissemination') and '<it>percentage of complex loci</it>' (or 'Sophistication') appear to be useful discriminators, and to reflect mechanistic aspects of TCS organisation not captured by existing metrics.</p

    Star formation triggered by HII regions in our Galaxy: First results for N49 from the Herschel infrared survey of the Galactic plane

    Get PDF
    It has been shown that by means of different physical mechanisms the expansion of HII regions can trigger the formation of new stars of all masses. This process may be important to the formation of massive stars but has never been quantified in the Galaxy. We use Herschel-PACS and -SPIRE images from the Herschel Infrared survey of the Galactic plane, Hi-GAL, to perform this study. We combine the Spitzer-GLIMPSE and -MIPSGAL, radio-continuum and sub-millimeter surveys such as ATLASGAL with Hi-GAL to study Young Stellar Objects (YSOs) observed towards Galactic HII regions. We select a representative HII region, N49, located in the field centered on l=30 degr observed as part of the Hi-GAL Science Demonstration Phase, to demonstrate the importance Hi-GAL will have to this field of research. Hi-GAL PACS and SPIRE images reveal a new population of embedded young stars, coincident with bright ATLASGAL condensations. The Hi-GAL images also allow us, for the first time, to constrain the physical properties of the newly formed stars by means of fits to their spectral energy distribution. Massive young stellar objects are observed at the borders of the N49 region and represent second generation massive stars whose formation has been triggered by the expansion of the ionized region. Hi-GAL enables us to detect a population of young stars at different evolutionary stages, cold condensations only being detected in the SPIRE wavelength range. The far IR coverage of Hi-GAL strongly constrains the physical properties of the YSOs. The large and unbiased spatial coverage of this survey offers us a unique opportunity to lead, for the first time, a global study of star formation triggered by HII regions in our Galaxy.Comment: 4 pages, 2 figures, accepted by A&A (Special issue on Herschel first results

    Virulence and biotype analyses of hessian fly (Diptera: Cecidomyiidae) populations from Texas, Louisiana, and Oklahoma

    Get PDF
    Citation: Garces-Carerra, S. . . . & Chen, M. (2014). Virulence and Biotype Analyses of Hessian Fly (Diptera: Cecidomyiidae) Populations From Texas, Louisiana, and Oklahoma. Journal of Economic Entomology, 107(1), 417-423. https://doi.org/10.1603/EC13372Hessian fly, Mayetiola destructor (Say, 1817), is a major pest of wheat, and is controlled mainly through deploying fly-resistant wheat cultivars. The challenge for the plant resistance approach is that virulence of Hessian fly populations in the field is dynamic, and wheat cultivars may lose resistance within 6-8 yr. To ensure continuous success of host plant resistance, Hessian fly populations in the field need to be constantly monitored to determine which resistance genes remain effective in different geographic regions. This study investigated five Hessian fly populations collected from Texas, Louisiana, and Oklahoma, where infestation by Hessian fly has been high in recent years. Eight resistance genes, H12, H13, H17, H18, H22, H25, H26, and Hdic, were found to be highly effective against all tested Hessian fly populations in this region, conferring resistance to ≥80% of plants containing one of these resistance genes. The frequencies of biotypes virulent to resistance genes H13 (biotype vH13), H18 (vH18), H21 (vH21), H25 (vH25), H26 (vH26), and Hdic (vHdic) were determined, and were found to vary from population to population, ranging from 0 to 45%. A logistic regression model was established to predict biotype frequencies based on the correlation between the percentages of susceptible plants obtained in a virulence test and the log-odds of virulent biotype frequencies determined by a traditional approach

    IR Dust Bubbles: Probing the Detailed Structure and Young Massive Stellar Populations of Galactic HII Regions

    Full text link
    We present an analysis of wind-blown, parsec-sized, mid-infrared bubbles and associated star-formation using GLIMPSE/IRAC, MIPSGAL/MIPS and MAGPIS/VLA surveys. Three bubbles from the Churchwell et al. (2006) catalog were selected. The relative distribution of the ionized gas (based on 20 cm emission), PAH emission (based on 8 um, 5.8 um and lack of 4.5 um emission) and hot dust (24 um emission) are compared. At the center of each bubble there is a region containing ionized gas and hot dust, surrounded by PAHs. We identify the likely source(s) of the stellar wind and ionizing flux producing each bubble based upon SED fitting to numerical hot stellar photosphere models. Candidate YSOs are also identified using SED fitting, including several sites of possible triggered star formation.Comment: 37 pages, 17 figure

    Synthetic C18O observations of fibrous filaments: the problems of mapping from PPV to PPP

    Get PDF
    Molecular-line observations of filaments in star-forming regions have revealed the existence of elongated coherent features within the filaments; these features are termed fibres. Here we caution that, since fibres are traced in PPV space, there is no guarantee that they represent coherent features in PPP space. We illustrate this contention using simulations of the growth of a filament from a turbulent medium. Synthetic C18^{18}O observations of the simulated filaments reveal the existence of fibres very similar to the observed ones, i.e. elongated coherent features in the resulting PPV data-cubes. Analysis of the PPP data-cubes (i.e. 3D density fields) also reveals elongated coherent features, which we term sub-filaments. Unfortunately there is very poor correspondence between the fibres and the sub-filaments in the simulations. Both fibres and sub-filaments derive from inhomogeneities in the turbulent accretion flow onto the main filament. As a consequence, fibres are often affected by line-of-sight confusion. Similarly, sub-filaments are often affected by large velocity gradients, and even velocity discontinuities. These results suggest that extreme care should be taken when using velocity coherent features to constrain the underlying substructure within a filament.Comment: 15 pages + appendices, 26 figures. Accepted to MNRA
    • …
    corecore