100 research outputs found
The River Orontes in Syria and Turkey: downstream variation of fluvial archives in different crustal blocks
The geomorphology and Quaternary history of the River Orontes in western Syria and south-central Turkey have been studied using a combination of methods: field survey, differential GPS, satellite imagery, analysis of sediments to determine provenance, flow direction and fluvial environment, incorporation of evidence from fossils for both palaeoenvironments and biostratigraphy, uranium-series dating of calcrete cement, reconciliation of Palaeolithic archaeological contents, and uplift modelling based on terrace height distribution. The results underline the contrasting nature of different reaches of the Orontes, in part reflecting different crustal blocks, with different histories of landscape evolution. Upstream from Homs the Orontes has a system of calcreted terraces that form a staircase extending to ~200 m above the river. New U-series dating provides an age constraint within the lower part of the sequence that suggests underestimation of terrace ages in previous reviews. This upper valley is separated from another terraced reach, in the Middle Orontes, by a gorge cut through the Late MioceneâEarly Pliocene Homs Basalt. The Middle Orontes terraces have long been recognized as a source of mammalian fossils and Palaeolithic artefacts, particularly from Latamneh, near the downstream end of the reach. This terraced section of the valley ends at a fault scarp, marking the edge of the subsiding Ghab Basin (a segment of the Dead Sea Fault Zone), which has been filled to a depth of ~ 1 km by dominantly lacustrine sediments of PlioceneâQuaternary age. Review of the fauna from Latamneh suggests that its age is 1.2â0.9 Ma, significantly older than previously supposed, and commensurate with less uplift in this reach than both the Upper and Lower Orontes. Two localities near the downstream end of the Ghab have provided molluscan and ostracod assemblages that record somewhat saline environments, perhaps caused by desiccation within the former lacustrine basin, although they include fluvial elements. The Ghab is separated from another subsiding and formerly lacustrine depocentre, the Amik Basin of Hatay Province, Turkey, by a second gorge, implicit of uplift, this time cut through Palaeogene limestone. The NEâSW oriented lowermost reach of the Orontes is again terraced, with a third and most dramatic gorge through the northern edge of the Ziyaret DaÄı mountains, which are known to have experienced rapid uplift, probably again enhanced by movement on an active fault. Indeed, a conclusion of the research, in which these various reaches are compared, is that the crust in the Hatay region is significantly more dynamic than that further upstream, where uplift has been less rapid and less continuous
Integration of genetics into a systems model of electrocardiographic traits using humanCVD BeadChip
<p>BackgroundâElectrocardiographic traits are important, substantially heritable determinants of risk of arrhythmias and sudden cardiac death.</p>
<p>Methods and ResultsâIn this study, 3 population-based cohorts (n=10 526) genotyped with the Illumina HumanCVD Beadchip and 4 quantitative electrocardiographic traits (PR interval, QRS axis, QRS duration, and QTc interval) were evaluated for single-nucleotide polymorphism associations. Six gene regions contained single nucleotide polymorphisms associated with these traits at P<10â6, including SCN5A (PR interval and QRS duration), CAV1-CAV2 locus (PR interval), CDKN1A (QRS duration), NOS1AP, KCNH2, and KCNQ1 (QTc interval). Expression quantitative trait loci analyses of top associated single-nucleotide polymorphisms were undertaken in human heart and aortic tissues. NOS1AP, SCN5A, IGFBP3, CYP2C9, and CAV1 showed evidence of differential allelic expression. We modeled the effects of ion channel activity on electrocardiographic parameters, estimating the change in gene expression that would account for our observed associations, thus relating epidemiological observations and expression quantitative trait loci data to a systems model of the ECG.</p>
<p>ConclusionsâThese association results replicate and refine the mapping of previous genome-wide association study findings for electrocardiographic traits, while the expression analysis and modeling approaches offer supporting evidence for a functional role of some of these loci in cardiac excitation/conduction.</p>
On Darboux-Treibich-Verdier potentials
It is shown that the four-parameter family of elliptic functions
introduced
by Darboux and rediscovered a hundred years later by Treibich and Verdier, is
the most general meromorphic family containing infinitely many finite-gap
potentials.Comment: 8 page
Evolution of density perturbations in a realistic universe
Prompted by the recent more precise determination of the basic cosmological
parameters and growing evidence that the matter-energy content of the universe
is now dominated by dark energy and dark matter we present the general solution
of the equation that describes the evolution of density perturbations in the
linear approximation. It turns out that as in the standard CDM model the
density perturbations grow very slowly during the radiation dominated epoch and
their amplitude increases by a factor of about 4000 in the matter and later
dark energy dominated epoch of expansion of the universe.Comment: 19 pages, 4 figure
Brane-Antibrane Inflation in Orbifold and Orientifold Models
We analyse the cosmological implications of brane-antibrane systems in
string-theoretic orbifold and orientifold models. In a class of realistic
models, consistency conditions require branes and antibranes to be stuck at
different fixed points, and so their mutual attraction generates a potential
for one of the radii of the underlying torus or the 4D string dilaton. Assuming
that all other moduli have been fixed by string effects, we find that this
potential leads naturally to a period of cosmic inflation with the radion or
dilaton field as the inflaton. The slow-roll conditions are satisfied more
generically than if the branes were free to move within the space. The
appearance of tachyon fields at certain points in moduli space indicates the
onset of phase transitions to different non-BPS brane systems, providing ways
of ending inflation and reheating the corresponding observable brane universe.
In each case we find relations between the inflationary parameters and the
string scale to get the correct spectrum of density perturbations. In some
examples the small numbers required as inputs are no smaller than 0.01, and are
the same small quantities which are required to explain the gauge hierarchy.Comment: 30 pages, 2 figures. Substantial changes on version 1. New
cosmological scenarios proposed including the dilaton as the inflaton. Main
conclusions unchange
Idling Magnetic White Dwarf in the Synchronizing Polar BY Cam. The Noah-2 Project
Results of a multi-color study of the variability of the magnetic cataclysmic
variable BY Cam are presented. The observations were obtained at the Korean
1.8m and Ukrainian 2.6m, 1.2m and 38-cm telescopes in 2003-2005, 56
observational runs cover 189 hours. The variations of the mean brightness in
different colors are correlated with a slope dR/dV=1.29(4), where the number in
brackets denotes the error estimates in the last digits. For individual runs,
this slope is much smaller ranging from 0.98(3) to 1.24(3), with a mean value
of 1.11(1). Near the maximum, the slope becomes smaller for some nights,
indicating more blue spectral energy distribution, whereas the night-to-night
variability has an infrared character. For the simultaneous UBVRI photometry,
the slopes increase with wavelength from dU/dR=0.23(1) to dI/dR=1.18(1). Such
wavelength dependence is opposite to that observed in non-magnetic cataclysmic
variables, in an agreement to the model of cyclotron emission. The principal
component analysis shows two (with a third at the limit of detection)
components of variablitity with different spectral energy distribution, which
possibly correspond to different regions of emission. The scalegram analysis
shows a highest peak corresponding to the 200-min spin variability, its quarter
and to the 30-min and 8-min QPOs. The amplitudes of all these components are
dependent on wavelength and luminosity state. The light curves were fitted by a
statistically optimal trigonometrical polynomial (up to 4-th order) to take
into account a 4-hump structure. The dependences of these parameters on the
phase of the beat period and on mean brightness are discussed. The amplitude of
spin variations increases with an increasing wavelength and with decreasing
brightnessComment: 30pages, 11figures, accepted in Cent.Eur.J.Phy
Enhanced Group Analysis and Exact Solutions of Variable Coefficient Semilinear Diffusion Equations with a Power Source
A new approach to group classification problems and more general
investigations on transformational properties of classes of differential
equations is proposed. It is based on mappings between classes of differential
equations, generated by families of point transformations. A class of variable
coefficient (1+1)-dimensional semilinear reaction-diffusion equations of the
general form () is studied from the
symmetry point of view in the framework of the approach proposed. The singular
subclass of the equations with is singled out. The group classifications
of the entire class, the singular subclass and their images are performed with
respect to both the corresponding (generalized extended) equivalence groups and
all point transformations. The set of admissible transformations of the imaged
class is exhaustively described in the general case . The procedure of
classification of nonclassical symmetries, which involves mappings between
classes of differential equations, is discussed. Wide families of new exact
solutions are also constructed for equations from the classes under
consideration by the classical method of Lie reductions and by generation of
new solutions from known ones for other equations with point transformations of
different kinds (such as additional equivalence transformations and mappings
between classes of equations).Comment: 40 pages, this is version published in Acta Applicanda Mathematica
Experimental studies of confined detonations of plasticized high explosives in inert and reactive atmospheres
When explosives detonate in a confined space, repeated boundary reflections result in complex shock interactions and the formation of a uniform quasi-static pressure (QSP). For fuel-rich explosives, mixing of partially oxidized detonation products with an oxygen-rich atmosphere results in a further energy release through rapid secondary combustion or âafterburnâ. While empirical formulae and thermochemical modelling approaches have been developed to predict QSP, a lack of high-fidelity experimental data means questions remain around the deterministic quality of confined explosions, and the magnitude and mechanisms of afterburn reactions. This article presents experimental data for RDX- and PETN-based plastic explosives, demonstrating the high repeatability of the QSP generated in a sealed chamber using pressure transducers and high-speed infrared thermometry. Detonations in air, nitrogen and argon atmospheres are used to identify the contribution of afterburn to total QSP, to estimate the duration of afterburn reactions and to speculate on the flame temperature associated with this mechanism. Computational fluid dynamic modelling of the experiments was also able to accurately predict these effects. Understanding and quantifying explosions in complex environments are critical for the design of effective protective structures: the mechanisms described here provide a significant step towards the development of fast-running engineering models for internal blast events
- âŠ