153 research outputs found
Assessment of the effectiveness of head only and back-of-the-head electrical stunning of chickens
The study assesses the effectiveness of reversible head-only and back-of-the-head electrical stunning of chickens using 130–950 mA per bird at 50 Hz AC
Minerals in esophageal samples from steers on native bluestem pastures
This report summarizes monthly mineral contents of burned and control native bluestem pastures determined with samples from fisulated steers. Burning decreases calcium (Ca), potassium (K), and iron (Fe), and slightly decreases zinc (Zn). All minerals we studied were adequate for grazing cattle except that magnesium (Mg) and Potassium (K) appear to be borderline during winter months
A Planarity Test via Construction Sequences
Optimal linear-time algorithms for testing the planarity of a graph are
well-known for over 35 years. However, these algorithms are quite involved and
recent publications still try to give simpler linear-time tests. We give a
simple reduction from planarity testing to the problem of computing a certain
construction of a 3-connected graph. The approach is different from previous
planarity tests; as key concept, we maintain a planar embedding that is
3-connected at each point in time. The algorithm runs in linear time and
computes a planar embedding if the input graph is planar and a
Kuratowski-subdivision otherwise
Adiabatic response for Lindblad dynamics
We study the adiabatic response of open systems governed by Lindblad
evolutions. In such systems, there is an ambiguity in the assignment of
observables to fluxes (rates) such as velocities and currents. For the
appropriate notion of flux, the formulas for the transport coefficients are
simple and explicit and are governed by the parallel transport on the manifold
of instantaneous stationary states. Among our results we show that the response
coefficients of open systems, whose stationary states are projections, is given
by the adiabatic curvature.Comment: 33 pages, 4 figures, accepted versio
Extended Superscaling of Electron Scattering from Nuclei
An extended study of scaling of the first and second kinds for inclusive
electron scattering from nuclei is presented. Emphasis is placed on the
transverse response in the kinematic region lying above the quasielastic peak.
In particular, for the region in which electroproduction of resonances is
expected to be important, approximate scaling of the second kind is observed
and the modest breaking of it is shown probably to be due to the role played by
an inelastic version of the usual scaling variable.Comment: LaTeX, 36 pages including 5 color postscript figures and 4 postscript
figure
Superscaling of Inclusive Electron Scattering from Nuclei
We investigate the degree to which the concept of superscaling, initially
developed within the framework of the relativistic Fermi gas model, applies to
inclusive electron scattering from nuclei. We find that data obtained from the
low energy loss side of the quasielastic peak exhibit the superscaling
property, i.e., the scaling functions f(\psi') are not only independent of
momentum transfer (the usual type of scaling: scaling of the first kind), but
coincide for A \geq 4 when plotted versus a dimensionless scaling variable
\psi' (scaling of the second kind). We use this behavior to study as yet poorly
understood properties of the inclusive response at large electron energy loss.Comment: 33 pages, 12 color EPS figures, LaTeX2e using BoxedEPSF macros; email
to [email protected]
Stein structures and holomorphic mappings
We prove that every continuous map from a Stein manifold X to a complex
manifold Y can be made holomorphic by a homotopic deformation of both the map
and the Stein structure on X. In the absence of topological obstructions the
holomorphic map may be chosen to have pointwise maximal rank. The analogous
result holds for any compact Hausdorff family of maps, but it fails in general
for a noncompact family. Our main results are actually proved for smooth almost
complex source manifolds (X,J) with the correct handlebody structure. The paper
contains another proof of Eliashberg's (Int J Math 1:29--46, 1990) homotopy
characterization of Stein manifolds and a slightly different explanation of the
construction of exotic Stein surfaces due to Gompf (Ann Math 148 (2):619--693,
1998; J Symplectic Geom 3:565--587, 2005). (See also the related preprint
math/0509419).Comment: The original publication is available at http://www.springerlink.co
Landscape Features Impact on Soil Available Water, Corn Biomass, and Gene Expression during the Late Vegetative Stage
Crop yields at summit positions of rolling landscapes often are lower than backslope yields. The differences in plant response may be the result of many different factors. We examined corn (Zea mays L.) plant productivity, gene expression, soil water, and nutrient availability in two landscape positions located in historically high (backslope) and moderate (summit and shoulder) yielding zones to gain insight into plant response differences. Growth characteristics, gene expression, and soil parameters (water and N and P content) were determined at the V12 growth stage of corn. At tassel, plant biomass, N content, 13C isotope discrimination (Δ), and soil water was measured. Soil water was 35% lower in the summit and shoulder compared with the lower backslope plots. Plants at the summit had 16% less leaf area, biomass, and N and P uptake at V12 and 30% less biomass at tassel compared with plants from the lower backslope. Transcriptome analysis at V12 indicated that summit and shoulder-grown plants had 496 downregulated and 341 upregulated genes compared with backslope-grown plants. Gene set and subnetwork enrichment analyses indicated alterations in growth and circadian response and lowered nutrient uptake, wound recovery, pest resistance, and photosynthetic capacity in summit and shoulder-grown plants. Reducing plant populations, to lessen demands on available soil water, and applying pesticides, to limit biotic stress, may ameliorate negative water stress responses
Modeling, optimizing and simulating robot calibration with accuracy improvement
This work describes techniques for modeling, optimizing and simulating calibration processes ofrobots using off-line programming. The identification of geometric parameters of the nominalkinematic model is optimized using techniques of numerical optimization of the mathematicalmodel. The simulation of the actual robot and the measurement system is achieved by introducingrandom errors representing their physical behavior and its statistical repeatability. An evaluationof the corrected nominal kinematic model brings about a clear perception of the influence ofdistinct variables involved in the process for a suitable planning, and indicates a considerableaccuracy improvement when the optimized model is compared to the non-optimized one
- …