290 research outputs found

    The van Niel International Prize for Studies in Bacterial Systematics, awarded in 2020 to Tanja Woyke

    Get PDF
    The Senate of The University of Queensland, on the recommendation of the Executive Board of the International Committee on Systematics of Prokaryotes, is pleased to present the van Niel International Prize for Studies in Bacterial Systematics for the triennium 2017–2020 to Dr Tanja Woyke in recognition of her contributions made to the field of bacterial systemat-ics. The award, established in 1986 by Professor V. B. D. Skerman of The University of Queensland, honours the contribution of scholarship in the field of microbiology by Professor Cornelis Bernardus van Niel

    Functional response of the soil microbial community to biochar applications

    Get PDF
    Biochar has the potential to mitigate the impacts of climate change and soil degradation by simultaneously sequestering C in soil and improving soil quality. However, the mechanism of biochar's effect on soil microbial communities remains unclear. Therefore, we conducted a global meta-analysis, where we collected 2,110 paired observations from 107 published papers and used structural equation modeling (SEM) to analyze the effects of biochar on microbial community structure and function. Our result indicated that arbuscular mycorrhizal fungal abundance, microbial biomass C, and functional richness increased with biochar addition regardless of loads, time since application, and experiment types. Results from mixed linear model analysis suggested that soil respiration and actinomycetes (ACT) abundance decreased with biochar application. With the increase of soil pH, the effect of biochar on fungal abundance and C metabolic ability was lessened. Higher biochar pH associated with higher pyrolysis temperatures reduced the abundance of bacteria, fungi, ACT, and soil microbes feeding on miscellaneous C from Biolog Eco-plate experiments. SEM that examined the effect of biochar properties, load, and soil properties on microbial community indicated that fungal abundance was the dominant factor affecting the response of the bacterial abundance to biochar. The response of bacterial abundance to biochar addition was soil dependent, whereas fungi abundance was mostly related to biochar load and pyrolysis temperature. Based on soil conditions, controlling biochar load and production conditions would be a direct way to regulate the effect of biochar application on soil microbial function and increase the capacity to sequester C

    Genome sequencing suggests diverse secondary metabolism in coral-associated aquimarina megaterium

    Get PDF
    We report here the genome sequences of three Aquimarina megaterium strains isolated from the octocoral Euniceila labiata. We reveal a coding potential for versatile carbon metabolism and biosynthesis of natural products belonging to the polyketide, nonribosomal peptide, and terpene compound classes.info:eu-repo/semantics/publishedVersio

    Speech Communication

    Get PDF
    Contains research objectives and three research projects.U. S. Air Force (Electronic Systems Division) under Contract AF 19(604)-6102National Science Foundation (Grant G-16526)National Institutes of Health (Grant MH-04737-02

    The Nbp35/ApbC homolog acts as a nonessential [4Fe-4S] transfer protein in methanogenic archaea

    Get PDF
    © 2019 Federation of European Biochemical Societies The nucleotide binding protein 35 (Nbp35)/cytosolic Fe-S cluster deficient 1 (Cfd1)/alternative pyrimidine biosynthetic protein C (ApbC) protein homologs have been identified in all three domains of life. In eukaryotes, the Nbp35/Cfd1 heterocomplex is an essential Fe-S cluster assembly scaffold required for the maturation of Fe-S proteins in the cytosol and nucleus, whereas the bacterial ApbC is an Fe-S cluster transfer protein only involved in the maturation of a specific target protein. Here, we show that the Nbp35/ApbC homolog MMP0704 purified from its native archaeal host Methanococcus maripaludis contains a [4Fe-4S] cluster that can be transferred to a [4Fe-4S] apoprotein. Deletion of mmp0704 from M. maripaludis does not cause growth deficiency under our tested conditions. Our data indicate that Nbp35/ApbC is a nonessential [4Fe-4S] cluster transfer protein in methanogenic archaea

    Hymenobacter artigasi sp. nov., isolated from air sampling in maritime Antarctica

    Get PDF
    A rod-shaped and Gram-stain-negative bacterial strain, 1BT, was isolated from an air sample collected at King George Island, maritime Antarctica. Strain 1BT is strictly aerobic, psychrophilic, catalase-positive, oxidase-positive and non-motile. Growth of strain 1BT is observed at 0–20 °C (optimum, 10 °C), pH 6.0–8.0 (optimum, pH 8.0) and in the presence of 0–1.0% NaCl (optimum, 0.5 % NaCl). Phylogenetic analysis based on 16S rRNA gene sequences places strain 1BT within the genus Hymenobacter and shows the highest similarity to Hymenobacter antarcticus VUG-A42aaT (97.5 %). The predominant menaquinone of strain 1BT is MK-7 and the major fatty acids (>10 %) comprise summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c; 32.5 %), iso-C15 : 0 (17.6 %) and anteiso C15 : 0 (12.3 %). The polar lipid profile consists of the major compounds phosphatidylethanolamine, phosphatidylserine, two unidentified aminolipids and one unidentified phospholipid. The DNA G+C content based on the draft genome sequence is 61.2 mol%. Based on the data from the current polyphasic study, 1BT represents a novel species of the genus Hymenobacter , for which the name Hymenobacter artigasi sp. nov. is suggested. The type strain is 1BT (=CCM 8970T=CGMCC 1.16843T)

    Draft genome sequence of type strain HBR26T and description of Rhizobium aethiopicum sp. nov.

    Get PDF
    Abstract Rhizobium aethiopicum sp. nov. is a newly proposed species within the genus Rhizobium. This species includes six rhizobial strains; which were isolated from root nodules of the legume plant Phaseolus vulgaris growing in soils of Ethiopia. The species fixes nitrogen effectively in symbiosis with the host plant P. vulgaris, and is composed of aerobic, Gram-negative staining, rod-shaped bacteria. The genome of type strain HBR26T of R. aethiopicum sp. nov. was one of the rhizobial genomes sequenced as a part of the DOE JGI 2014 Genomic Encyclopedia project designed for soil and plant-associated and newly described type strains. The genome sequence is arranged in 62 scaffolds and consists of 6,557,588 bp length, with a 61% G + C content and 6221 protein-coding and 86 RNAs genes. The genome of HBR26T contains repABC genes (plasmid replication genes) homologous to the genes found in five different Rhizobium etli CFN42T plasmids, suggesting that HBR26T may have five additional replicons other than the chromosome. In the genome of HBR26T, the nodulation genes nodB, nodC, nodS, nodI, nodJ and nodD are located in the same module, and organized in a similar way as nod genes found in the genome of other known common bean-nodulating rhizobial species. nodA gene is found in a different scaffold, but it is also very similar to nodA genes of other bean-nodulating rhizobial strains. Though HBR26T is distinct on the phylogenetic tree and based on ANI analysis (the highest value 90.2% ANI with CFN42T) from other bean-nodulating species, these nod genes and most nitrogen-fixing genes found in the genome of HBR26T share high identity with the corresponding genes of known bean-nodulating rhizobial species (96–100% identity). This suggests that symbiotic genes might be shared between bean-nodulating rhizobia through horizontal gene transfer. R. aethiopicum sp. nov. was grouped into the genus Rhizobium but was distinct from all recognized species of that genus by phylogenetic analyses of combined sequences of the housekeeping genes recA and glnII. The closest reference type strains for HBR26T were R. etli CFN42T (94% similarity of the combined recA and glnII sequences) and Rhizobium bangladeshense BLR175T (93%). Genomic ANI calculation based on protein-coding genes also revealed that the closest reference strains were R. bangladeshense BLR175T and R. etli CFN42T with ANI values 91.8 and 90.2%, respectively. Nevertheless, the ANI values between HBR26T and BLR175T or CFN42T are far lower than the cutoff value of ANI (> = 96%) between strains in the same species, confirming that HBR26T belongs to a novel species. Thus, on the basis of phylogenetic, comparative genomic analyses and ANI results, we formally propose the creation of R. aethiopicum sp. nov. with strain HBR26T (=HAMBI 3550T=LMG 29711T) as the type strain. The genome assembly and annotation data is deposited in the DOE JGI portal and also available at European Nucleotide Archive under accession numbers FMAJ01000001-FMAJ01000062
    corecore