729 research outputs found

    China Crosses the Yalu

    Get PDF

    Dynamic and Thermodynamic Stability and Negative Modes in Schwarzschild-Anti-de Sitter

    Get PDF
    The thermodynamic properties of Schwarzschild-anti-de Sitter black holes confined within finite isothermal cavities are examined. In contrast to the Schwarzschild case, the infinite cavity limit may be taken which, if suitably stated, remains double valued. This allows the correspondence between non-existence of negative modes for classical solutions and local thermodynamic stability of the equilibrium configuration of such solutions to be shown in a well defined manner. This is not possible in the asymptotically flat case. Furthermore, the non-existence of negative modes for the larger black hole solution in Schwarzschild-anti-de Sitter provides strong evidence in favour of the recent positive energy conjecture by Horowitz and Myers.Comment: 21 pages, 5 figures, LaTe

    One-loop Renormalization of Black Hole Entropy Due to Non-minimally Coupled Matter

    Get PDF
    The quantum entanglement entropy of an eternal black hole is studied. We argue that the relevant Euclidean path integral is taken over fields defined on α\alpha-fold covering of the black hole instanton. The statement that divergences of the entropy are renormalized by renormalization of gravitational couplings in the effective action is proved for non-minimally coupled scalar matter. The relationship of entanglement and thermodynamical entropies is discussed.Comment: 17 pages, latex, no figure

    At what times during infection is SARS-CoV-2 detectable and no longer detectable using RT-PCR-based tests? A systematic review of individual participant data

    Get PDF
    Background: Tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral ribonucleic acid (RNA) using reverse transcription polymerase chain reaction (RT-PCR) are pivotal to detecting current coronavirus disease (COVID-19) and duration of detectable virus indicating potential for infectivity. / Methods: We conducted an individual participant data (IPD) systematic review of longitudinal studies of RT-PCR test results in symptomatic SARS-CoV-2. We searched PubMed, LitCOVID, medRxiv, and COVID-19 Living Evidence databases. We assessed risk of bias using a QUADAS-2 adaptation. Outcomes were the percentage of positive test results by time and the duration of detectable virus, by anatomical sampling sites. / Results: Of 5078 studies screened, we included 32 studies with 1023 SARS-CoV-2 infected participants and 1619 test results, from − 6 to 66 days post-symptom onset and hospitalisation. The highest percentage virus detection was from nasopharyngeal sampling between 0 and 4 days post-symptom onset at 89% (95% confidence interval (CI) 83 to 93) dropping to 54% (95% CI 47 to 61) after 10 to 14 days. On average, duration of detectable virus was longer with lower respiratory tract (LRT) sampling than upper respiratory tract (URT). Duration of faecal and respiratory tract virus detection varied greatly within individual participants. In some participants, virus was still detectable at 46 days post-symptom onset. / Conclusions: RT-PCR misses detection of people with SARS-CoV-2 infection; early sampling minimises false negative diagnoses. Beyond 10 days post-symptom onset, lower RT or faecal testing may be preferred sampling sites. The included studies are open to substantial risk of bias, so the positivity rates are probably overestimated

    Towards a Physarum learning chip

    Get PDF
    Networks of protoplasmic tubes of organism Physarum polycehpalum are macro-scale structures which optimally span multiple food sources to avoid repellents yet maximize coverage of attractants. When data are presented by configurations of attractants and behaviour of the slime mould is tuned by a range of repellents, the organism preforms computation. It maps given data configuration into a protoplasmic network. To discover physical means of programming the slime mould computers we explore conductivity of the protoplasmic tubes; proposing that the network connectivity of protoplasmic tubes shows pathway-dependent plasticity. To demonstrate this we encourage the slime mould to span a grid of electrodes and apply AC stimuli to the network. Learning and weighted connections within a grid of electrodes is produced using negative and positive voltage stimulation of the network at desired nodes; low frequency (10 Hz) sinusoidal (0.5 V peak-to-peak) voltage increases connectivity between stimulated electrodes while decreasing connectivity elsewhere, high frequency (1000 Hz) sinusoidal (2.5 V peak-to-peak) voltage stimulation decreases network connectivity between stimulated electrodes. We corroborate in a particle model. This phenomenon may be used for computation in the same way that neural networks process information and has the potential to shed light on the dynamics of learning and information processing in non-neural metazoan somatic cell networks

    Accuracy and repeatability of wrist joint angles in boxing using an electromagnetic tracking system

    Get PDF
    © 2019, The Author(s). The hand-wrist region is reported as the most common injury site in boxing. Boxers are at risk due to the amount of wrist motions when impacting training equipment or their opponents, yet we know relatively little about these motions. This paper describes a new method for quantifying wrist motion in boxing using an electromagnetic tracking system. Surrogate testing procedure utilising a polyamide hand and forearm shape, and in vivo testing procedure utilising 29 elite boxers, were used to assess the accuracy and repeatability of the system. 2D kinematic analysis was used to calculate wrist angles using photogrammetry, whilst the data from the electromagnetic tracking system was processed with visual 3D software. The electromagnetic tracking system agreed with the video-based system (paired t tests) in both the surrogate ( 0.9). In the punch testing, for both repeated jab and hook shots, the electromagnetic tracking system showed good reliability (ICCs > 0.8) and substantial reliability (ICCs > 0.6) for flexion–extension and radial-ulnar deviation angles, respectively. The results indicate that wrist kinematics during punching activities can be measured using an electromagnetic tracking system

    The Current Status of Binary Black Hole Simulations in Numerical Relativity

    Full text link
    Since the breakthroughs in 2005 which have led to long term stable solutions of the binary black hole problem in numerical relativity, much progress has been made. I present here a short summary of the state of the field, including the capabilities of numerical relativity codes, recent physical results obtained from simulations, and improvements to the methods used to evolve and analyse binary black hole spacetimes.Comment: 14 pages; minor changes and corrections in response to referee

    Quasi-Normal Modes of Stars and Black Holes

    Get PDF
    Perturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades. They are of particular importance today, because of their relevance to gravitational wave astronomy. In this review we present the theory of quasi-normal modes of compact objects from both the mathematical and astrophysical points of view. The discussion includes perturbations of black holes (Schwarzschild, Reissner-Nordstr\"om, Kerr and Kerr-Newman) and relativistic stars (non-rotating and slowly-rotating). The properties of the various families of quasi-normal modes are described, and numerical techniques for calculating quasi-normal modes reviewed. The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.Comment: 74 pages, 7 figures, Review article for "Living Reviews in Relativity

    Baby Boomers and the Lost Generation: On the discursive construction of generations at work

    Get PDF
    Generations, and generational categories, offer a means of organising our understandings of age and age-related issues. Particularly within practitioner-orientated debates, differences between generations are highlighted as creating tensions which organisations must address. In contrast, we offer a critical interrogation of generations and unpack the implications of particular constructions. Specifically we examine the discursive construction of generational issues in UK online news about age at work, focusing on baby boomers and the lost generation. We highlight the discursive work involved in constructing each generation as entitled to work and how responsibility for employment issues is variously positioned. These inter-related concerns develop into a debate about consequences, as different versions of the future are constructed. In contrast to essentialised understandings, our study shows how generations and generational categories are constructed and organise understandings of age at work. We further highlight how the constructions of generational differences and tensions become enrolled and legitimate age-related differences with regard to work. Such insights are essential to further our understandings of age-related issues in contemporary organising

    Analysis of LIGO data for gravitational waves from binary neutron stars

    Get PDF
    We report on a search for gravitational waves from coalescing compact binary systems in the Milky Way and the Magellanic Clouds. The analysis uses data taken by two of the three LIGO interferometers during the first LIGO science run and illustrates a method of setting upper limits on inspiral event rates using interferometer data. The analysis pipeline is described with particular attention to data selection and coincidence between the two interferometers. We establish an observational upper limit of R<\mathcal{R}<1.7 \times 10^{2}peryearperMilkyWayEquivalentGalaxy(MWEG),with90coalescencerateofbinarysystemsinwhicheachcomponenthasamassintherange13 per year per Milky Way Equivalent Galaxy (MWEG), with 90% confidence, on the coalescence rate of binary systems in which each component has a mass in the range 1--3 M_\odot$.Comment: 17 pages, 9 figure
    corecore