224 research outputs found

    A search for fast radio burst-like emission from Fermi gamma-ray bursts

    Full text link
    We report the results of the rapid follow-up observations of gamma-ray bursts (GRBs) detected by the Fermi satellite to search for associated fast radio bursts. The observations were conducted with the Australian Square Kilometre Array Pathfinder at frequencies from 1.2-1.4 GHz. A set of 20 bursts, of which four were short GRBs, were followed up with a typical latency of about one minute, for a duration of up to 11 hours after the burst. The data was searched using 4096 dispersion measure trials up to a maximum dispersion measure of 3763 pc cm−3^{-3}, and for pulse widths ww over a range of duration from 1.256 to 40.48 ms. No associated pulsed radio emission was observed above 26Jyms(w/1ms)−1/226 {\rm Jy ms} (w/1 {\rm ms})^{-1/2} for any of the 20 GRBs.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journa

    Regions based on social structure

    Get PDF
    Boas argued that anthropologists should make historical comparisons within well-defined regional contexts. A century later, we have many improvements in the statistical methodologies for comparative research, yet most of our regional constructs remain without a valid empirical basis. We present a new method for developing and testing regions. The method takes into account older anthropological concerns with relationships between culture history and the environment, embodied in the culture-area concept, as well as contemporary concerns with historical linkages of societies into world systems. We develop nine new regions based on social structural data and test them using data on 35 I societies. We compare the new regions with Murdock's regional constructs and find that our regional classification is a strong improvement over Murdock's. In so doiig we obtain evidence for the cross-cultural importance of gender and descent systems, for the importance of constraint relationships upon sociocultural systems, for the historical importance of two precapitalist world systems, and for strikingly different geographical alignments of cultural systems in the Old World and the Americas

    Global prevalence and disease burden of vitamin D deficiency: a roadmap for action in low- and middle-income countries.

    Get PDF
    Vitamin D is an essential nutrient for bone health and may influence the risks of respiratory illness, adverse pregnancy outcomes, and chronic diseases of adulthood. Because many countries have a relatively low supply of foods rich in vitamin D and inadequate exposure to natural ultraviolet B (UVB) radiation from sunlight, an important proportion of the global population is at risk of vitamin D deficiency. There is general agreement that the minimum serum/plasma 25-hydroxyvitamin D concentration (25(OH)D) that protects against vitamin D deficiency-related bone disease is approximately 30 nmol/L; therefore, this threshold is suitable to define vitamin D deficiency in population surveys. However, efforts to assess the vitamin D status of populations in low- and middle-income countries have been hampered by limited availability of population-representative 25(OH)D data, particularly among population subgroups most vulnerable to the skeletal and potential extraskeletal consequences of low vitamin D status, namely exclusively breastfed infants, children, adolescents, pregnant and lactating women, and the elderly. In the absence of 25(OH)D data, identification of communities that would benefit from public health interventions to improve vitamin D status may require proxy indicators of the population risk of vitamin D deficiency, such as the prevalence of rickets or metrics of usual UVB exposure. If a high prevalence of vitamin D deficiency is identified (>20% prevalence of 25(OH)D 1%), food fortification and/or targeted vitamin D supplementation policies can be implemented to reduce the burden of vitamin D deficiency-related conditions in vulnerable populations

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 10−2210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200

    Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers

    Get PDF
    We study frequency dependent (FD) input-output schemes for signal-recycling interferometers, the baseline design of Advanced LIGO and the current configuration of GEO 600. Complementary to a recent proposal by Harms et al. to use FD input squeezing and ordinary homodyne detection, we explore a scheme which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are sub-optimal among all possible input-output schemes, provide a global noise suppression by the power squeeze factor, while being realizable by using detuned Fabry-Perot cavities as input/output filters. At high frequencies, the two schemes are shown to be equivalent, while at low frequencies our scheme gives better performance than that of Harms et al., and is nearly fully optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LIGO era (with 30-m filter cavities and current estimates of filter-mirror losses and thermal noise), for neutron star binary inspirals, and for narrowband GW sources such as low-mass X-ray binaries and known radio pulsars. Optical losses are shown to be a major obstacle for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation interferometers, like EURO/LIGO-III (~2012), with kilometer-scale filter cavities, a signal-recycling interferometer with the FD readout scheme explored in this paper can have performances comparable to existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi

    Deep Investigation of Neutral Gas Origins (DINGO): HI stacking experiments with early science data

    Full text link
    We present early science results from Deep Investigation of Neutral Gas Origins (DINGO), an HI survey using the Australian Square Kilometre Array Pathfinder (ASKAP). Using ASKAP sub-arrays available during its commissioning phase, DINGO early science data were taken over ∌\sim 60 deg2^{2} of the Galaxy And Mass Assembly (GAMA) 23 h region with 35.5 hr integration time. We make direct detections of six known and one new sources at z<0.01z < 0.01. Using HI spectral stacking, we investigate the HI gas content of galaxies at 0.04<z<0.090.04 < z< 0.09 for different galaxy colours. The results show that galaxy morphology based on optical colour is strongly linked to HI gas properties. To examine environmental impacts on the HI gas content of galaxies, three sub-samples are made based on the GAMA group catalogue. The average HI mass of group central galaxies is larger than those of satellite and isolated galaxies, but with a lower HI gas fraction. We derive a variety of HI scaling relations for physical properties of our sample, including stellar mass, stellar mass surface density, NUV−rNUV-r colour, specific star formation rate, and halo mass. We find that the derived HI scaling relations are comparable to other published results, with consistent trends also observed to ∌\sim0.5 dex lower limits in stellar mass and stellar surface density. The cosmic HI densities derived from our data are consistent with other published values at similar redshifts. DINGO early science highlights the power of HI spectral stacking techniques with ASKAP.Comment: 27 pages, 25 figures, 10 tables, accepted for publication in MNRA

    Search for gravitational wave bursts in LIGO's third science run

    Get PDF
    We report on a search for gravitational wave bursts in data from the three LIGO interferometric detectors during their third science run. The search targets subsecond bursts in the frequency range 100-1100 Hz for which no waveform model is assumed, and has a sensitivity in terms of the root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published in Classical and Quantum Gravit

    Deep Investigation of Neutral Gas Origins (DINGO): HI stacking experiments with early science data

    Get PDF
    We present early science results from Deep Investigation of Neutral Gas Origins (DINGO), an H I survey using the Australian Square Kilometre Array Pathfinder (ASKAP). Using ASKAP subarrays available during its commissioning phase, DINGO early science data were taken over ∌60 deg2 of the Galaxy And Mass Assembly (GAMA) 23 h region with 35.5 h integration time. We make direct detections of six known and one new sources at z \u3c 0.01. Using H I spectral stacking, we investigate the H I gas content of galaxies at 0.04 \u3c z \u3c 0.09 for different galaxy colours. The results show that galaxy morphology based on optical colour is strongly linked to H I gas properties. To examine environmental impacts on the H I gas content of galaxies, three subsamples are made based on the GAMA group catalogue. The average H I mass of group central galaxies is larger than those of satellite and isolated galaxies, but with a lower H I gas fraction. We derive a variety of H I scaling relations for physical properties of our sample, including stellar mass, stellar mass surface density, NUV − r colour, specific star formation rate, and halo mass. We find that the derived H I scaling relations are comparable to other published results, with consistent trends also observed to ∌0.5 dex lower limits in stellar mass and stellar surface density. The cosmic H I densities derived from our data are consistent with other published values at similar redshifts. DINGO early science highlights the power of H I spectral stacking techniques with ASKA

    ”ChemLab: twenty years of developing CBRNE detection systems with low false alarm rates

    Get PDF
    Gas Chromatography (GC) is routinely used in the laboratory to temporally separate chemical mixtures into their constituent components for improved chemical identification. This paper will provide a overview of more than twenty years of development of one-dimensional field-portable micro GC systems, highlighting key experimental results that illustrate how a reduction in false alarm rate (FAR) is achieved in real-world environments. Significantly, we will also present recent results on a micro two-dimensional GC (micro GCxGC) technology. This ultra-small system consists of microfabricated columns, NanoElectroMechanical System (NEMS) cantilever resonators for detection, and a valve-based stop-flow modulator. The separation of a 29-component polar mixture in less than 7 seconds is demonstrated along with peak widths in the second dimension ranging from 10-60 ms. For this system, a peak capacity of just over 300 was calculated for separation in about 6 s. This work has important implications for field detection, to drastically reduce FAR and significantly improve chemical selectivity and identification. This separation performance was demonstrated with the NEMS resonator and bench scale FID. But other detectors, suitably fast and sensitive can work as well. Recent research has shown that the identification power of GCxGC-FID can match that of GC-MS. This result indicates a path to improved size, weight, power, and performance in micro GCxGC systems outfitted with relatively non-specific, lightweight detectors. We will briefly discuss the performance of possible options, such as the pulsed discharge helium ionization detector (PDHID) and miniature correlation ion mobility spectrometer (mini-CIMS)

    Quasi-Normal Modes of Stars and Black Holes

    Get PDF
    Perturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades. They are of particular importance today, because of their relevance to gravitational wave astronomy. In this review we present the theory of quasi-normal modes of compact objects from both the mathematical and astrophysical points of view. The discussion includes perturbations of black holes (Schwarzschild, Reissner-Nordstr\"om, Kerr and Kerr-Newman) and relativistic stars (non-rotating and slowly-rotating). The properties of the various families of quasi-normal modes are described, and numerical techniques for calculating quasi-normal modes reviewed. The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.Comment: 74 pages, 7 figures, Review article for "Living Reviews in Relativity
    • 

    corecore