8 research outputs found
The American Congress of Rehabilitation Medicine Diagnostic Criteria for Mild Traumatic Brain Injury
Objective: To develop new diagnostic criteria for mild traumatic brain injury (TBI) that are appropriate for use across the lifespan and in sports, civilian trauma, and military settings. Design: Rapid evidence reviews on 12 clinical questions and Delphi method for expert consensus. Participants: The Mild Traumatic Brain Injury Task Force of the American Congress of Rehabilitation Medicine Brain Injury Special Interest Group convened a Working Group of 17 members and an external interdisciplinary expert panel of 32 clinician-scientists. Public stakeholder feedback was analyzed from 68 individuals and 23 organizations. Results: The first 2 Delphi votes asked the expert panel to rate their agreement with both the diagnostic criteria for mild TBI and the supporting evidence statements. In the first round, 10 of 12 evidence statements reached consensus agreement. Revised evidence statements underwent a second round of expert panel voting, where consensus was achieved for all. For the diagnostic criteria, the final agreement rate, after the third vote, was 90.7%. Public stakeholder feedback was incorporated into the diagnostic criteria revision prior to the third expert panel vote. A terminology question was added to the third round of Delphi voting, where 30 of 32 (93.8%) expert panel members agreed that ‘the diagnostic label ‘concussion’ may be used interchangeably with ‘mild TBI’ when neuroimaging is normal or not clinically indicated.’ Conclusions: New diagnostic criteria for mild TBI were developed through an evidence review and expert consensus process. Having unified diagnostic criteria for mild TBI can improve the quality and consistency of mild TBI research and clinical care.</p
The American Congress of Rehabilitation Medicine Diagnostic Criteria for Mild Traumatic Brain Injury
Objective: To develop new diagnostic criteria for mild traumatic brain injury (TBI) that are appropriate for use across the lifespan and in sports, civilian trauma, and military settings. Design: Rapid evidence reviews on 12 clinical questions and Delphi method for expert consensus. Participants: The Mild Traumatic Brain Injury Task Force of the American Congress of Rehabilitation Medicine Brain Injury Special Interest Group convened a Working Group of 17 members and an external interdisciplinary expert panel of 32 clinician-scientists. Public stakeholder feedback was analyzed from 68 individuals and 23 organizations. Results: The first 2 Delphi votes asked the expert panel to rate their agreement with both the diagnostic criteria for mild TBI and the supporting evidence statements. In the first round, 10 of 12 evidence statements reached consensus agreement. Revised evidence statements underwent a second round of expert panel voting, where consensus was achieved for all. For the diagnostic criteria, the final agreement rate, after the third vote, was 90.7%. Public stakeholder feedback was incorporated into the diagnostic criteria revision prior to the third expert panel vote. A terminology question was added to the third round of Delphi voting, where 30 of 32 (93.8%) expert panel members agreed that ‘the diagnostic label ‘concussion’ may be used interchangeably with ‘mild TBI’ when neuroimaging is normal or not clinically indicated.’ Conclusions: New diagnostic criteria for mild TBI were developed through an evidence review and expert consensus process. Having unified diagnostic criteria for mild TBI can improve the quality and consistency of mild TBI research and clinical care.</p
Recommended from our members
Reducing acetylated tau is neuroprotective in brain injury
Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer’s disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau. Subsequent tau mislocalization causes neurodegeneration and neurobehavioral impairment, and ac-tau accumulates in the blood. Blocking GAPDH S-nitrosylation, inhibiting p300/CBP, or stimulating Sirtuin1 all protect mice from neurodegeneration, neurobehavioral impairment, and blood and brain accumulation of ac-tau after TBI. Ac-tau is thus a therapeutic target and potential blood biomarker of TBI that may represent pathologic convergence between TBI and AD. Increased ac-tau in human AD brain is further augmented in AD patients with history of TBI, and patients receiving the p300/CBP inhibitors salsalate or diflunisal exhibit decreased incidence of AD and clinically diagnosed TBI.[Display omitted]•Brain injury induces Alzheimer’s disease-like neuronal ac-tau•Neurodegenerative brain injury is reflected by ac-tau blood levels in mice and people•Decreasing ac-tau after brain injury at multiple signaling nodes is neuroprotective•Ac-tau-inhibiting medicines are associated with reduced neurodegenerative diseaseReducing brain injury-induced neuronal tau acetylation is neuroprotective in traumatic brain injury and has a role in Alzheimer’s disease pathogenesis