420 research outputs found

    Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada

    Get PDF
    Forest inventory and monitoring programs are needed to provide timely, spatially complete (i.e. mapped), and verifiable information to support forest management, policy formulation, and reporting obligations. Satellite images, in particular data from the Landsat Thematic Mapper and Enhanced Thematic Mapper (TM/ETM +) sensors, are often integrated with field plots from forest inventory programs, leveraging the complete spatial coverage of imagery with detailed ecological information from a sample of plots to spatially model forest conditions and resources. However, in remote and unmanaged areas such as Canada's northern forests, financial and logistic constraints can severely limit the availability of inventory plot data. Additionally, Landsat spectral information has known limitations for characterizing vertical vegetation structure and biomass; while clouds, snow, and short growing seasons can limit development of large area image mosaics that are spectrally and phenologically consistent across space and time. In this study we predict and map forest structure and aboveground biomass over 37 million ha of forestland in Saskatchewan, Canada. We utilize lidar plots—observations of forest structure collected from airborne discrete-return lidar transects acquired in 2010—as a surrogate for traditional field and photo plots. Mapped explanatory data included Tasseled Cap indices and multi-temporal change metrics derived from Landsat TM/ETM + pixel-based image composites. Maps of forest structure and total aboveground biomass were created using a Random Forest (RF) implementation of Nearest Neighbor (NN) imputation. The imputation model had moderate to high plot-level accuracy across all forest attributes (R2 values of 0.42–0.69), as well as reasonable attribute predictions and error estimates (for example, canopy cover above 2 m on validation plots averaged 35.77%, with an RMSE of 13.45%, while unsystematic and systematic agreement coefficients (ACuns and ACsys) had values of 0.63 and 0.97 respectively). Additionally, forest attributes displayed consistent trends in relation to the time since and magnitude of wildfires, indicating model predictions captured the dominant ecological patterns and processes in these forests. Acknowledging methodological and conceptual challenges based upon the use of lidar plots from transects, this study demonstrates that using lidar plots and pixel compositing in imputation mapping can provide forest inventory and monitoring information for regions lacking ongoing or up-to-date field data collection programs

    Remote sensing technologies for enhancing forest inventories: a review

    No full text
    Forest inventory and management requirements are changing rapidly in the context of an increasingly complex set of economic, environmental, and social policy objectives. Advanced remote sensing technologies provide data to assist in addressing these escalating information needs and to support the subsequent development and parameterization of models for an even broader range of information needs. This special issue contains papers that use a variety of remote sensing technologies to derive forest inventory or inventory-related information. Herein, we review the potential of 4 advanced remote sensing technologies, which we posit as having the greatest potential to influence forest inventories designed to characterize forest resource information for strategic, tactical, and operational planning: airborne laser scanning (ALS), terrestrial laser scanning (TLS), digital aerial photogrammetry (DAP), and high spatial resolution (HSR)/very high spatial resolution (VHSR) satellite optical imagery. ALS, in particular, has proven to be a transformative technology, offering forest inventories the required spatial detail and accuracy across large areas and a diverse range of forest types. The coupling of DAP with ALS technologies will likely have the greatest impact on forest inventory practices in the next decade, providing capacity for a broader suite of attributes, as well as for monitoring growth over time

    Risk Factors for Development of Chronic Kidney Disease in Cats

    Get PDF
    BACKGROUND: Identification of risk factors for development of chronic kidney disease (CKD) in cats may aid in its earlier detection. HYPOTHESIS/OBJECTIVES: Evaluation of clinical and questionnaire data will identify risk factors for development of azotemic CKD in cats. ANIMALS: One hundred and forty‐eight client‐owned geriatric (>9 years) cats. METHODS: Cats were recruited into the study and followed longitudinally for a variable time. Owners were asked to complete a questionnaire regarding their pet at enrollment. Additional data regarding dental disease were obtained when available by development of a dental categorization system. Variables were explored in univariable and multivariable Cox regression models. RESULTS: In the final multivariable Cox regression model, annual/frequent vaccination (P value, .003; hazard ratio, 5.68; 95% confidence interval, 1.83–17.64), moderate dental disease (P value, .008; hazard ratio, 13.83; 95% confidence interval, 2.01–94.99), and severe dental disease (P value, .001; hazard ratio, 35.35; 95% confidence interval, 4.31–289.73) predicted development of azotemic CKD. CONCLUSION: Our study suggests independent associations between both vaccination frequency and severity of dental disease and development of CKD. Further studies to explore the pathophysiological mechanism of renal injury for these risk factors are warranted

    A mathematical model of biofilm growth and spread within plant xylem: case study of Xylella fastidiosa in olive trees

    Get PDF
    Xylem-limited bacterial pathogens cause some of the most destructive plant diseases. Though imposed measures to control these pathogens are generally ineffective, even among susceptible taxa, some hosts can limit bacterial loads and symptom expression. Mechanisms by which this resistance is achieved are poorly understood. In particular, it is still unknown how differences in vascular structure may influence biofilm growth and spread within a host. To address this, we developed a novel theoretical framework to describe biofilm behaviour within xylem vessels, adopting a polymer-based modelling approach. We then parameterised the model to investigate the relevance of xylem vessel diameters on Xylella fastidiosa resistance among olive cultivars. The functionality of all vessels was severely reduced under infection, with hydraulic flow reductions of 2–3 orders of magnitude. However, results suggest wider vessels act as biofilm incubators; allowing biofilms to develop over a long time while still transporting them through the vasculature. By contrast, thinner vessels become blocked much earlier, limiting biofilm spread. Using experimental data on vessel diameter distributions, we were able to determine that a mechanism of resistance in the olive cultivar Leccino is a relatively low abundance of the widest vessels, limiting X. fastidiosa spread

    Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms

    Get PDF
    Clonal proliferation in myeloproliferative neoplasms (MPN) is driven by somatic mutations in JAK2, CALR or MPL, but the contribution of inherited factors is poorly characterized. Using a three-stage genome-wide association study of 3,437 MPN cases and 10,083 controls, we identify two SNPs with genome-wide significance in JAK2V617F-negative MPN: rs12339666 (JAK2; meta-analysis P=1.27 × 10−10) and rs2201862 (MECOM; meta-analysis P=1.96 × 10−9). Two additional SNPs, rs2736100 (TERT) and rs9376092 (HBS1L/MYB), achieve genome-wide significance when including JAK2V617F-positive cases. rs9376092 has a stronger effect in JAK2V617F-negative cases with CALR and/or MPL mutations (Breslow–Day P=4.5 × 10−7), whereas in JAK2V617F-positive cases rs9376092 associates with essential thrombocythemia (ET) rather than polycythemia vera (allelic χ2 P=7.3 × 10−7). Reduced MYB expression, previously linked to development of an ET-like disease in model systems, associates with rs9376092 in normal myeloid cells. These findings demonstrate that multiple germline variants predispose to MPN and link constitutional differences in MYB expression to disease phenotype

    The Alvarez impact theory of mass extinction; limits to its applicability and the „great expectations syndrome”

    Get PDF
    For the past three decades, the Alvarez impact theory of mass extinction, causally related to catastrophic meteorite impacts, has been recurrently applied to multiple extinction boundaries. However, these multidisciplinary research efforts across the globe have been largely unsuccessful to date, with one outstanding exception: the Cretaceous-Paleogene boundary. The unicausal impact scenario as a leading explanation, when applied to the complex fossil record, has resulted in force-fitting of data and interpretations ("great expectations syndrome". The misunderstandings can be grouped at three successive levels of the testing process, and involve the unreflective application of the impact paradigm: (i) factual misidentification, i.e., an erroneous or indefinite recognition of the extraterrestrial record in sedimentological, physical and geochemical contexts, (ii) correlative misinterpretation of the adequately documented impact signals due to their incorrect dating, and (iii) causal overestimation when the proved impact characteristics are doubtful as a sufficient trigger of a contemporaneous global cosmic catastrophe. Examples of uncritical belief in the simple cause-effect scenario for the Frasnian-Famennian, Permian-Triassic, and Triassic-Jurassic (and the Eifelian-Givetian and Paleocene-Eocene as well) global events include mostly item-1 pitfalls (factual misidentification), with Ir enrichments and shocked minerals frequently misidentified. Therefore, these mass extinctions are still at the first test level, and only the F-F extinction is potentially seen in the context of item-2, the interpretative step, because of the possible causative link with the Siljan Ring crater (53 km in diameter). The erratically recognized cratering signature is often marked by large timing and size uncertainties, and item-3, the advanced causal inference, is in fact limited to clustered impacts that clearly predate major mass extinctions. The multi-impact lag-time pattern is particularly clear in the Late Triassic, when the largest (100 km diameter) Manicouagan crater was possibly concurrent with the end-Carnian extinction (or with the late Norian tetrapod turnover on an alternative time scale). The relatively small crater sizes and cratonic (crystalline rock basement) setting of these two craters further suggest the strongly insufficient extraterrestrial trigger of worldwide environmental traumas. However, to discuss the kill potential of impact events in a more robust fashion, their location and timing, vulnerability factors, especially target geology and palaeogeography in the context of associated climate-active volatile fluxes, should to be rigorously assessed. The current lack of conclusive impact evidence synchronous with most mass extinctions may still be somewhat misleading due to the predicted large set of undiscovered craters, particularly in light of the obscured record of oceanic impact events

    Are shallow-water shrimps proxies for hydrothermal-vent shrimps to assess the impact of deep-sea mining?

    Get PDF
    Polymetallic seafloor massive sulphide deposits are potential targets for deep-sea mining, but high concentrations of metals (including copper - Cu) may be released during exploitation activities, potentially inducing harmful impact. To determine whether shallow-water shrimp are suitable ecotoxicological proxies for deep-sea hydrothermal vent shrimp the effects of waterborne Cu exposure (3 and 10 days at 0.4 and 4â€ŻÎŒM concentrations) in Palaemon elegans, Palaemon serratus, and Palaemon varians were compared with Mirocaris fortunata. Accumulation of Cu and a set of biomarkers were analysed. Results show different responses among congeneric species indicating that it is not appropriate to use shallow-water shrimps as ecotoxicological proxies for deep-water shrimps. During the evolutionary history of these species they were likely subject to different chemical environments which may have induced different molecular/biochemical adaptations/tolerances. Results highlight the importance of analysing effects of deep-sea mining in situ and in local species to adequately assess ecotoxicological effects under natural environmental conditions.This work was developed under the MIDAS project (Managing im-pacts of deep-sea resource exploitation), funded by the EuropeanCommission, European Union, 7th Framework Programme under thetheme“Sustainable management of Europe's deep sea and sub-seafloorresources”(Grant Agreement 603418). This work was also supported bythe Fundação para a CiĂȘncia e Tecnologia I.P. Portugal (FCT) and theDireção-Geral de PolĂ­tica do Mar (DGPM), Portugal through the projectMining2/2017/001–MiningImpact 2 (JPI Oceans), and FCT furtherfunded the grants CEECIND005262017 and UID/MAR/00350/2013.We acknowledge the captains and crews of the oceanographic ship“Pourquoi Pas?”, and the pilots of Victor 6000 Remotely OperatedVehicle, for their dedicated assistance during sampling of vent shrimps.We are also grateful to F. Lallier, chief scientist of the Biobaz cruise. Wewould like to warmly thank OcĂ©anopolis staffmembers, J-M CarrĂ©, SDelaporte and O Gouello, for their important contributions to shrimpmaintenance.info:eu-repo/semantics/publishedVersio
    • 

    corecore