1,990 research outputs found

    Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).

    Get PDF
    The potential toxicity and accumulation of engineered nanomaterials (ENMs) in agricultural crops has become an area of great concern and intense investigation. Interestingly, although below-ground vegetables are most likely to accumulate the highest concentrations of ENMs, little work has been done investigating the potential uptake and accumulation of ENMs for this plant group. The overall objective of this study was to evaluate how different forms of cerium (bulk cerium oxide, cerium oxide nanoparticles, and the cerium ion) affected the growth of radish (Raphanus sativus L.) and accumulation of cerium in radish tissues. Ionic cerium (Ce(3+)) had a negative effect on radish growth at 10 mg CeCl3/L, whereas bulk cerium oxide (CeO2) enhanced plant biomass at the same concentration. Treatment with 10 mg/L cerium oxide nanoparticles (CeO2 NPs) had no significant effect on radish growth. Exposure to all forms of cerium resulted in the accumulation of this element in radish tissues, including the edible storage root. However, the accumulation patterns and their effect on plant growth and physiological processes varied with the characteristics of cerium. This study provides a critical frame of reference on the effects of CeO2 NPs versus their bulk and ionic counterparts on radish growth

    Caspase-3, myogenic transcription factors and cell cycle inhibitors are regulated by leukemia inhibitory factor to mediate inhibition of myogenic differentiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leukemia inhibitory factor (LIF) is known to inhibit myogenic differentiation as well as to inhibit apoptosis and caspase-3 activation in non-differentiating myoblasts. In addition caspase-3 activity is required for myogenic differentiation. Therefore the aim of this study was to further investigate mechanisms of the differentiation suppressing effect of LIF in particular the possibility of a caspase-3 mediated inhibition of differentiation.</p> <p>Results</p> <p>LIF dependent inhibition of differentiation appeared to involve several mechanisms. Differentiating myoblasts that were exposed to LIF displayed increased transcripts for c-fos. Transcripts for the cell cycle inhibitor p21 as well as muscle regulatory factors myoD and myogenin were decreased with LIF exposure. However, LIF did not directly induce a proliferative effect under differentiation conditions, but did prevent the proportion of myoblasts that were proliferating from decreasing as differentiation proceeded. LIF stimulation decreased the percentage of cells positive for active caspase-3 occurring during differentiation. Both the effect of LIF inhibiting caspase-3 activation and differentiation appeared dependent on mitogen activated protein kinase and extracellular signal regulated kinase kinase (MEK) signalling. The role of LIF in myogenic differentiation was further refined to demonstrate that myoblasts are unlikely to secrete LIF endogenously.</p> <p>Conclusions</p> <p>Altogether this study provides a more comprehensive view of the role of LIF in myogenic differentiation including LIF and receptor regulation in myoblasts and myotubes, mechanisms of inhibition of differentiation and the link between caspase-3 activation, apoptosis and myogenic differentiation.</p

    The Formation and Application of Polymeric Micro- and Nanoparticles

    Get PDF
    Nano- and microparticles are used in the pharmaceutical industry for sustained release drug delivery systems. For example, polymeric particles are currently used as an FDA-approved drug delivery system for leuprolide acetate to treat prostate cancer1. Our drug of interest is CPDI-02 (formerly known as EP67)—a C5a-derived decapeptide agonist of the C5a Receptor (CD88) that activates mononuclear phagocytes to produce an immune response while potentially minimizing neutrophil-mediated toxicity2. Currently in the Vetro Lab, CPDI-02 is being tested on pigs and mice to treat methicillin-resistant Staphylococcus aureus (MRSA) infections and as the adjuvant for a vaccine for cytomegalovirus (CMV). This investigation explored formulation parameters that impact particle size and loading of CPDI-02 in a traditional oil-in-water (O/W) emulsion. We also explored adapting the formulation using microfluidic chips to generate nano- and microparticles and improve run-to-run consistency in particle size.https://digitalcommons.unmc.edu/surp2022/1004/thumbnail.jp

    Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases

    Get PDF
    BACKGROUND: Appropriate definition of neural network architecture prior to data analysis is crucial for successful data mining. This can be challenging when the underlying model of the data is unknown. The goal of this study was to determine whether optimizing neural network architecture using genetic programming as a machine learning strategy would improve the ability of neural networks to model and detect nonlinear interactions among genes in studies of common human diseases. RESULTS: Using simulated data, we show that a genetic programming optimized neural network approach is able to model gene-gene interactions as well as a traditional back propagation neural network. Furthermore, the genetic programming optimized neural network is better than the traditional back propagation neural network approach in terms of predictive ability and power to detect gene-gene interactions when non-functional polymorphisms are present. CONCLUSION: This study suggests that a machine learning strategy for optimizing neural network architecture may be preferable to traditional trial-and-error approaches for the identification and characterization of gene-gene interactions in common, complex human diseases

    Endometrial caspase 1 and interleukin-18 expression during the estrous cycle and peri-implantation period of porcine pregnancy and response to early exogenous estrogen administration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role for endometrial secretion of cytokines during the establishment of pregnancy in a number of mammals is well established. The current study determined endometrial expression of caspase 1 (CASP1) and interleukin-18 (IL18) during the estrous cycle and early pregnancy, and following early estrogen administration, which induces conceptus loss during early development in pigs.</p> <p>Methods</p> <p>Gilts were hysterectomized on either D 0, 5, 10, 12, 15 and 18 of the estrous cycle, or D 10, 12, 15 or 18 of pregnancy. The abundance of endometrial CASP1 mRNA was unaffected by day of the estrous cycle, however there was a 6 and 10-fold increase in expression on D 15 and 18 of pregnancy. Endometrial expression of IL18 mRNA increased 5-fold between D 10 to 18 in cyclic and pregnant gilts. Total recoverable IL18 in uterine flushings was greater in pregnant compared to cyclic gilts on D 15 and 18.</p> <p>In the second experiment, mated gilts were treated with either corn oil (CO) or estrogen (E) on D 9 and 10 and hysterectomized on either D 10, 12, 13, 15 or 17 of pregnancy. The current study localizes the presence of CASP1 to the epithelial layer of the endometrium for the first time. Further, a day Ă— treatment interaction was detected for endometrial CASP1 mRNA and protein abundance as E stimulated an earlier increase on D 13 compared to CO gilts. Although IL18 mRNA expression remained unaltered from the E treatment, protein abundance was significantly attenuated on D 15 and 18 in response to E treatment.</p> <p>Conclusions</p> <p>Endometrial expression of CASP1 and IL18 is associated with establishment of pregnancy in pigs. Alteration of CASP1 and IL18 following premature exposure of the uterus to estrogen during early pregnancy may contribute to conceptus loss between Days 15 to 18 of pregnancy.</p

    An assessment of pediatric residency applicant perceptions of Fit during the virtual interview era

    Get PDF
    PURPOSE: Residency recruitment events and interviews are widely considered an integral component of the residency match experience. Due to the COVID-19 pandemic, residency recruitment and interviewing throughout the 2020-2021 academic year were performed virtually, which created challenges for applicants\u27 ability to discern fit to a program. Given this change, it is reasonable to suspect that applicants would be less able to discern program fit. Therefore, this study evaluated how virtual interviews impacted pediatric residency applicants\u27 ability to assess factors contributing to fit and subsequently how applicants assessed their self-perceived fit to their top-ranked programs. METHODS: An online, anonymous survey was distributed to all residency applicants who applied to any specialty at our large academic institution. The survey utilized a 5-point Likert-type scale to evaluate qualities of fit as well as the applicants\u27 self-perceived ability to assess these qualities through a virtual platform. RESULTS: 1,840 surveys were distributed, of which 473 residency applicants responded (25.7% response rate). Among these responses, 81 were pediatric applicants (27.6%). Factors deemed most important in determining fit included how well the residents get along with one another (98.8%), how much the program appeared to care about its trainees (97.5%), and how satisfied residents were with their program (97.5%). Qualities deemed most difficult for applicants to discern included the quality of facilities (18.6%), patient diversity (29.4%), and how well the residents got along with one another (30.2%). When compared to all other residency applicants, pediatric applicants placed more value on whether a program was family-friendly (p = 0.015), the quality of the facilities (p = 0.009), and the on-call system (p = 0.038). CONCLUSION: This study highlights factors that influence pediatric applicants\u27 perception of fit into a program. Unfortunately, many factors deemed most important for pediatric applicants were also among the most difficult to assess virtually. These include resident camaraderie, whether a program cares about its residents, and overall resident satisfaction. Taken together, these findings and the recommendations presented should be considered by all residency program leaders to ensure the successful recruitment of a pediatric residency class

    The Size and Shape of Voids in Three-Dimensional Galaxy Surveys

    Get PDF
    The sizes and shapes of voids in a galaxy survey depend not only on the physics of structure formation, but also on the sampling density of the survey and on the algorithm used to define voids. Using an N-body simulation with a CDM power spectrum, we study the properties of voids in samples with different number densities of galaxies, both in redshift space and in real space. When voids are defined as regions totally empty of galaxies, their characteristic volume is strongly dependent on sampling density; when they are defined as regions whose density is 0.2 times the mean galaxy density, the dependence is less strong. We compare two void-finding algorithms, one in which voids are nonoverlapping spheres, and one, based on the algorithm of Aikio and Mahonen, which does not predefine the shape of a void. Regardless of the algorithm chosen, the characteristic void size is larger in redshift space than in real space, and is larger for low sampling densities than for high sampling densities. We define an elongation statistic Q which measures the tendency of voids to be stretched or squashed along the line of sight. Using this statistic, we find that at sufficiently high sampling densities (comparable to the number densities of galaxies brighter than L_*), large voids tend to be slightly elongated along the line of sight in redshift space.Comment: LaTex, 21 pages (including 7 figures), ApJ, submitte

    Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils.

    Get PDF
    Cerium oxide nanoparticles (CeO2 NP) are a common component of many commercial products. Due to the general concerns over the potential toxicity of engineered nanoparticles (ENPs), the phytotoxicity and in planta accumulation of CeO2 NPs have been broadly investigated. However, most previous studies were conducted in hydroponic systems and with grain crops. For a few studies performed with soil grown plants, the impact of soil properties on the fate and transport of CeO2 NPs was generally ignored even though numerous previous studies indicate that soil properties play a critical role in the fate and transport of environmental pollutants. The objectives of this study were to evaluate the soil fractionation and bioavailability of CeO2 NPs to Raphanus sativus L (radish) in two soil types. Our results showed that the silty loam contained slightly higher exchangeable fraction (F1) of cerium element than did loamy sand soil, but significantly lower reducible (F2) and oxidizable (F3) fractions as CeO2 NPs concentration increased. CeO2 NPs associated with silicate minerals or the residue fraction (F4) dominated in both soils. The cerium concentration in radish storage root showed linear correlation with the sum of the first three fractions (r(2) = 0.98 and 0.78 for loamy sand and silty loam respectively). However, the cerium content in radish shoots only exhibited strong correlations with F1 (r(2) = 0.97 and 0.89 for loamy sand and silty loam respectively). Overall, the results demonstrated that soil properties are important factors governing the distribution of CeO2 NPs in soil and subsequent bioavailability to plants

    Flow-Tube Reactor Experiments on the High Temperature Oxidation of Carbon Weaves

    Get PDF
    Under entry conditions carbon weaves used in thermal protection systems (TPS) decompose via oxidation. Modeling this phenomenon is challenging due to the different regimes encountered along a flight trajectory. Approaches using equilibrium chemistry may lead to over-estimated mass loss and recession at certain conditions. Concurrently, there is a shortcoming of experimental data on carbon weaves to enable development of improved models. In this work, a flow-tube test facility was used to measure the oxidation of carbon weaves at temperatures up to 1500 K. The material tested was the 3D carbon weave used for the heat shield of the NASA Adaptive Deployable Entry and Placement Technology, ADEPT. Oxidation was characterized by quantifying decomposition gases (CO and CO2), by mass measurements, and by microscale surface analysis. The current set of measurements contributes to the development of finite rate chemistry models for carbon fabrics used in woven TPS materials
    • …
    corecore